import os import gradio as gr from openai import OpenAI from optillm.cot_reflection import cot_reflection from optillm.rto import round_trip_optimization from optillm.z3_solver import Z3SolverSystem from optillm.self_consistency import advanced_self_consistency_approach from optillm.rstar import RStar from optillm.plansearch import plansearch from optillm.leap import leap API_KEY = os.environ.get("OPENROUTER_API_KEY") def respond( message, history: list[tuple[str, str]], model, approach, system_message, max_tokens, temperature, top_p, ): client = OpenAI(api_key=API_KEY, base_url="https://openrouter.ai/api/v1") messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) if approach == 'rto': final_response = round_trip_optimization(system_prompt, initial_query, client, model) elif approach == 'z3': z3_solver = Z3SolverSystem(system_prompt, client, model) final_response = z3_solver.process_query(initial_query) elif approach == "self_consistency": final_response = advanced_self_consistency_approach(system_prompt, initial_query, client, model) elif approach == "rstar": rstar = RStar(system_prompt, client, model) final_response = rstar.solve(initial_query) elif approach == "cot_reflection": final_response = cot_reflection(system_prompt, initial_query, client, model) elif approach == 'plansearch': final_response = plansearch(system_prompt, initial_query, client, model) elif approach == 'leap': final_response = leap(system_prompt, initial_query, client, model) return final_response # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Dropdown( ["nousresearch/hermes-3-llama-3.1-405b:free", "meta-llama/llama-3.1-8b-instruct:free", "qwen/qwen-2-7b-instruct:free", "google/gemma-2-9b-it:free", "mistralai/mistral-7b-instruct:free", ], value="nousresearch/hermes-3-llama-3.1-405b:free", label="Model", info="Choose the base model" ), gr.Dropdown( ["leap", "plansearch", "rstar", "cot_reflection", "rto", "self_consistency", "z3"], value="cot_reflection", label="Approach", info="Choose the approach" ), gr.Textbox(value="", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()