Spaces:
Running
Running
codefuse-admin
commited on
Commit
•
4c57d53
1
Parent(s):
497991b
Update README.md
Browse files
README.md
CHANGED
@@ -23,7 +23,7 @@ Hello World! This is CodeFuse!
|
|
23 |
|
24 |
In this release, we are open sourcing
|
25 |
1. [**The MFT (Multi-Task Fine-Tuning) framework, known as MFTCoder**](https://github.com/codefuse-ai/MFTCoder);
|
26 |
-
2. **Two datasets for enhancing the coding capabilities of LLMs
|
27 |
3. [**A faster and more reliable deployment framework based on FasterTransformer**](https://github.com/codefuse-ai/FasterTransformer4CodeFuse);
|
28 |
|
29 |
The resulting model ensemble, which includes [CodeFuse-13B](https://huggingface.co/codefuse/CodeFuse-13B) and [CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse/CodeFuse-CodeLlama-34B), supports various code-related tasks such as code completion, text-to-code conversion, and unit test generation. In particular, [CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse/CodeFuse-CodeLlama-34B), built upon CodeLlama as the base model and fine-tuned using the proposed MFT framework, achieves an impressive score of **74.4% (greedy decoding)** in the HumanEval Python pass@1 evaluation, **even surpassing the performance of GPT-4 (67%)**. We have plans to incorporate additional base LLMs into the ensemble in the near future.
|
@@ -38,7 +38,7 @@ CodeFuse的使命是开发专门设计用于支持整个软件开发生命周期
|
|
38 |
|
39 |
在本次发布中,我们开源了以下内容:
|
40 |
1. [**MFT(多任务微调)框架,也称为MFTCoder**](https://github.com/codefuse-ai/MFTCoder);
|
41 |
-
2. **两个用于增强LLMs
|
42 |
3. [**基于FasterTransformer的更快速、更可靠的部署框架**](https://github.com/codefuse-ai/FasterTransformer4CodeFuse);。
|
43 |
|
44 |
由此产生的模型集合包括[CodeFuse-13B](https://huggingface.co/codefuse/CodeFuse-13B)和[CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse/CodeFuse-CodeLlama-34B),支持多种与代码相关的任务,如代码补全、文本转代码、单元测试生成等。值得一提的是,[CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse/CodeFuse-CodeLlama-34B)基于CodeLlama作为基础模型,并利用我们提出的MFT框架进行微调,在HumanEval Python pass@1评估中取得高达的**74.4%(贪婪解码)**的好成绩,甚至**超过了GPT-4(67%)的表现**。我们计划在不久的将来将更多的基础LLMs纳入到我们的模型集合中。
|
|
|
23 |
|
24 |
In this release, we are open sourcing
|
25 |
1. [**The MFT (Multi-Task Fine-Tuning) framework, known as MFTCoder**](https://github.com/codefuse-ai/MFTCoder);
|
26 |
+
2. **Two datasets for enhancing the coding capabilities of LLMs, that is, [Code Exercise](https://huggingface.co/datasets/codefuse/CodeExercise-Python-27k) and [Evol-Instruction](https://huggingface.co/datasets/codefuse/Evol-instruction-66k);**
|
27 |
3. [**A faster and more reliable deployment framework based on FasterTransformer**](https://github.com/codefuse-ai/FasterTransformer4CodeFuse);
|
28 |
|
29 |
The resulting model ensemble, which includes [CodeFuse-13B](https://huggingface.co/codefuse/CodeFuse-13B) and [CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse/CodeFuse-CodeLlama-34B), supports various code-related tasks such as code completion, text-to-code conversion, and unit test generation. In particular, [CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse/CodeFuse-CodeLlama-34B), built upon CodeLlama as the base model and fine-tuned using the proposed MFT framework, achieves an impressive score of **74.4% (greedy decoding)** in the HumanEval Python pass@1 evaluation, **even surpassing the performance of GPT-4 (67%)**. We have plans to incorporate additional base LLMs into the ensemble in the near future.
|
|
|
38 |
|
39 |
在本次发布中,我们开源了以下内容:
|
40 |
1. [**MFT(多任务微调)框架,也称为MFTCoder**](https://github.com/codefuse-ai/MFTCoder);
|
41 |
+
2. **两个用于增强LLMs编码能力的数据集,包括[Code Exercise](https://huggingface.co/datasets/codefuse/CodeExercise-Python-27k)和[Evol-Instruction](https://huggingface.co/datasets/codefuse/Evol-instruction-66k);**
|
42 |
3. [**基于FasterTransformer的更快速、更可靠的部署框架**](https://github.com/codefuse-ai/FasterTransformer4CodeFuse);。
|
43 |
|
44 |
由此产生的模型集合包括[CodeFuse-13B](https://huggingface.co/codefuse/CodeFuse-13B)和[CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse/CodeFuse-CodeLlama-34B),支持多种与代码相关的任务,如代码补全、文本转代码、单元测试生成等。值得一提的是,[CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse/CodeFuse-CodeLlama-34B)基于CodeLlama作为基础模型,并利用我们提出的MFT框架进行微调,在HumanEval Python pass@1评估中取得高达的**74.4%(贪婪解码)**的好成绩,甚至**超过了GPT-4(67%)的表现**。我们计划在不久的将来将更多的基础LLMs纳入到我们的模型集合中。
|