import gradio as gr from loadimg import load_img import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms import moviepy.editor as mp from pydub import AudioSegment from PIL import Image import numpy as np import os import tempfile import uuid torch.set_float32_matmul_precision(["high", "highest"][0]) birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to("cuda") transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) @spaces.GPU def fn(vid, fps=0, bg_type="Color", color="#00FF00", bg_image=None): # Load the video using moviepy video = mp.VideoFileClip(vid) # Load original fps if fps value is equal to 0 if fps == 0: fps = video.fps # Extract audio from the video audio = video.audio # Extract frames at the specified FPS frames = video.iter_frames(fps=fps) # Process each frame for background removal processed_frames = [] yield gr.update(visible=True), gr.update(visible=False) for frame in frames: pil_image = Image.fromarray(frame) if bg_type == "Color": processed_image = process(pil_image, color) else: processed_image = process(pil_image, bg_image) processed_frames.append(np.array(processed_image)) yield processed_image, None # Create a new video from the processed frames processed_video = mp.ImageSequenceClip(processed_frames, fps=fps) # Add the original audio back to the processed video processed_video = processed_video.set_audio(audio) # Save the processed video to a temporary file temp_dir = "temp" os.makedirs(temp_dir, exist_ok=True) unique_filename = str(uuid.uuid4()) + ".mp4" temp_filepath = os.path.join(temp_dir, unique_filename) processed_video.write_videofile(temp_filepath, codec="libx264") yield gr.update(visible=False), gr.update(visible=True) # Return the path to the temporary file yield processed_image, temp_filepath def process(image, bg): image_size = image.size input_images = transform_image(image).unsqueeze(0).to("cuda") # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) if isinstance(bg, str): # If bg is a file path (image) background = Image.open(bg).convert("RGBA").resize(image_size) else: # If bg is a color hex code color_rgb = tuple(int(bg[i : i + 2], 16) for i in (1, 3, 5)) background = Image.new("RGBA", image_size, color_rgb + (255,)) # Composite the image onto the background using the mask image = Image.composite(image, background, mask) return image with gr.Blocks() as demo: with gr.Row(): in_video = gr.Video(label="Input Video") stream_image = gr.Image(label="Streaming Output", visible=False) out_video = gr.Video(label="Final Output Video") submit_button = gr.Button("Change Background") with gr.Row(): fps_slider = gr.Slider( minimum=0, maximum=60, step=1, value=0, label="Output FPS (0 will inherit the original fps value)", ) bg_type = gr.Radio(["Color", "Image"], label="Background Type", value="Color") color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True) bg_image = gr.Image(label="Background Image", type="filepath", visible=False) def update_visibility(bg_type): if bg_type == "Color": return gr.update(visible=True), gr.update(visible=False) else: return gr.update(visible=False), gr.update(visible=True) bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image]) examples = gr.Examples( ["rickroll-2sec.mp4"], inputs=in_video, outputs=[stream_image, out_video], fn=fn, cache_examples=True, cache_mode="eager", ) submit_button.click( fn, inputs=[in_video, fps_slider, bg_type, color_picker, bg_image], outputs=[stream_image, out_video], ) if __name__ == "__main__": demo.launch(show_error=True)