Spaces:
Runtime error
Runtime error
import gradio as gr | |
from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler | |
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
import math | |
#import spaces | |
import torch | |
from PIL import Image | |
import gc | |
if torch.backends.mps.is_available(): | |
DEVICE = "mps" | |
torch.mps.empty_cache() | |
gc.collect() | |
elif torch.cuda.is_available(): | |
DEVICE = "cuda" | |
torch.cuda.empty_cache() | |
gc.collect() | |
else: | |
DEVICE = "cpu" | |
print(f"DEVICE={DEVICE}") | |
#edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors") | |
#normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors") | |
edit_file = hf_hub_download(repo_id="cocktailpeanut/c", filename="cosxl_edit.safetensors") | |
normal_file = hf_hub_download(repo_id="cocktailpeanut/c", filename="cosxl.safetensors") | |
def set_timesteps_patched(self, num_inference_steps: int, device = None): | |
self.num_inference_steps = num_inference_steps | |
ramp = np.linspace(0, 1, self.num_inference_steps) | |
sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0) | |
sigmas = (sigmas).to(dtype=torch.float32, device=device) | |
self.timesteps = self.precondition_noise(sigmas) | |
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | |
self._step_index = None | |
self._begin_index = None | |
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
EDMEulerScheduler.set_timesteps = set_timesteps_patched | |
pipe_edit = CosStableDiffusionXLInstructPix2PixPipeline.from_single_file( | |
edit_file, num_in_channels=8 | |
) | |
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction") | |
pipe_edit.to(DEVICE) | |
pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16) | |
pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction") | |
pipe_normal.to(DEVICE) | |
#@spaces.GPU | |
def run_normal(prompt, negative_prompt="", guidance_scale=7, progress=gr.Progress(track_tqdm=True)): | |
return pipe_normal(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=20).images[0] | |
#@spaces.GPU | |
def run_edit(image, prompt, resolution, negative_prompt="", guidance_scale=7, progress=gr.Progress(track_tqdm=True)): | |
#resolution = 1024 | |
print(f"width={image.width}, height={image.height}") | |
image.thumbnail((resolution, resolution), Image.Resampling.LANCZOS) | |
#image.resize((resolution, resolution)) | |
#return pipe_edit(prompt=prompt,image=image,height=resolution,width=resolution,negative_prompt=negative_prompt, guidance_scale=guidance_scale,num_inference_steps=20).images[0] | |
print(f"width={image.width}, height={image.height}") | |
img = pipe_edit(prompt=prompt,image=image,height=image.height,width=image.width,negative_prompt=negative_prompt, guidance_scale=guidance_scale,num_inference_steps=20).images[0] | |
if DEVICE == "cuda": | |
torch.cuda.empty_cache() | |
gc.collect() | |
elif DEVICE == "mps": | |
torch.mps.empty_cache() | |
gc.collect() | |
return img | |
css = ''' | |
.gradio-container{ | |
max-width: 768px !important; | |
margin: 0 auto; | |
} | |
''' | |
normal_examples = ["portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", "backlit photography of a dog", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece"] | |
edit_examples = [["mountain.png", "make it a cloudy day"], ["painting.png", "make the earring fancier"]] | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown('''# CosXL demo | |
Unofficial demo for CosXL, a SDXL model tuned to produce full color range images. CosXL Edit allows you to perform edits on images. Both have a [non-commercial community license](https://huggingface.co/stabilityai/cosxl/blob/main/LICENSE) | |
''') | |
with gr.Tab("CosXL Edit"): | |
with gr.Group(): | |
image_edit = gr.Image(label="Image you would like to edit", type="pil") | |
prompt_edit = gr.Textbox(label="Prompt", scale=4, placeholder="Edit instructions, e.g.: Make the day cloudy") | |
size_edit = gr.Number(label="Size", value=1024, maximum=1024, minimum=512, precision=0) | |
button_edit = gr.Button("Generate", min_width=120) | |
output_edit = gr.Image(label="Your result image", interactive=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt_edit = gr.Textbox(label="Negative Prompt") | |
guidance_scale_edit = gr.Number(label="Guidance Scale", value=7) | |
gr.Examples(examples=edit_examples, fn=run_edit, inputs=[image_edit, prompt_edit, size_edit], outputs=[output_edit], cache_examples=False) | |
with gr.Tab("CosXL"): | |
with gr.Group(): | |
with gr.Row(): | |
prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: backlit photography of a dog") | |
button_normal = gr.Button("Generate", min_width=120) | |
output_normal = gr.Image(label="Your result image", interactive=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt_normal = gr.Textbox(label="Negative Prompt") | |
guidance_scale_normal = gr.Number(label="Guidance Scale", value=7) | |
gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples=False) | |
button_edit.click( | |
) | |
gr.on( | |
triggers=[ | |
button_normal.click, | |
prompt_normal.submit | |
], | |
fn=run_normal, | |
inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal], | |
outputs=[output_normal], | |
) | |
gr.on( | |
triggers=[ | |
button_edit.click, | |
prompt_edit.submit | |
], | |
fn=run_edit, | |
inputs=[image_edit, prompt_edit, size_edit, negative_prompt_edit, guidance_scale_edit], | |
outputs=[output_edit] | |
) | |
if __name__ == "__main__": | |
#demo.launch(share=True) | |
demo.launch() | |