# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py # also released under the MIT license. import argparse from concurrent.futures import ProcessPoolExecutor import os from pathlib import Path import subprocess as sp from tempfile import NamedTemporaryFile import time import typing as tp import warnings import torch import gradio as gr from audiocraft.data.audio_utils import convert_audio from audiocraft.data.audio import audio_write from audiocraft.models import AudioGen, MultiBandDiffusion MODEL = None # Last used model INTERRUPTING = False # We have to wrap subprocess call to clean a bit the log when using gr.make_waveform _old_call = sp.call def _call_nostderr(*args, **kwargs): # Avoid ffmpeg vomiting on the logs. kwargs['stderr'] = sp.DEVNULL kwargs['stdout'] = sp.DEVNULL _old_call(*args, **kwargs) sp.call = _call_nostderr # Preallocating the pool of processes. pool = ProcessPoolExecutor(4) pool.__enter__() def interrupt(): global INTERRUPTING INTERRUPTING = True class FileCleaner: def __init__(self, file_lifetime: float = 3600): self.file_lifetime = file_lifetime self.files = [] def add(self, path: tp.Union[str, Path]): self._cleanup() self.files.append((time.time(), Path(path))) def _cleanup(self): now = time.time() for time_added, path in list(self.files): if now - time_added > self.file_lifetime: if path.exists(): path.unlink() self.files.pop(0) else: break file_cleaner = FileCleaner() def make_waveform(*args, **kwargs): # Further remove some warnings. be = time.time() with warnings.catch_warnings(): warnings.simplefilter('ignore') out = gr.make_waveform(*args, **kwargs) print("Make a video took", time.time() - be) return out def load_model(version='facebook/audiogen-medium'): global MODEL print("Loading model", version) if MODEL is None or MODEL.name != version: MODEL = AudioGen.get_pretrained(version) def load_diffusion(): global MBD print("loading MBD") MBD = MultiBandDiffusion.get_mbd_musicgen() def _do_predictions(texts, duration, progress=False, **gen_kwargs): MODEL.set_generation_params(duration=duration, **gen_kwargs) be = time.time() target_sr = 32000 target_ac = 1 outputs = MODEL.generate(texts, progress=progress) if USE_DIFFUSION: outputs_diffusion = MBD.tokens_to_wav(outputs[1]) outputs = torch.cat([outputs[0], outputs_diffusion], dim=0) outputs = outputs.detach().cpu().float() pending_videos = [] out_wavs = [] for output in outputs: with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: audio_write( file.name, output, MODEL.sample_rate, strategy="loudness", loudness_headroom_db=16, loudness_compressor=True, add_suffix=False) pending_videos.append(pool.submit(make_waveform, file.name)) out_wavs.append(file.name) file_cleaner.add(file.name) out_videos = [pending_video.result() for pending_video in pending_videos] for video in out_videos: file_cleaner.add(video) print("batch finished", len(texts), time.time() - be) print("Tempfiles currently stored: ", len(file_cleaner.files)) return out_videos, out_wavs def predict_full(model, decoder, text, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()): global INTERRUPTING global USE_DIFFUSION INTERRUPTING = False if temperature < 0: raise gr.Error("Temperature must be >= 0.") if topk < 0: raise gr.Error("Topk must be non-negative.") if topp < 0: raise gr.Error("Topp must be non-negative.") topk = int(topk) if decoder == "MultiBand_Diffusion": USE_DIFFUSION = True load_diffusion() else: USE_DIFFUSION = False load_model(model) def _progress(generated, to_generate): progress((min(generated, to_generate), to_generate)) if INTERRUPTING: raise gr.Error("Interrupted.") MODEL.set_custom_progress_callback(_progress) videos, wavs = _do_predictions( [text], duration, progress=True, top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef) if USE_DIFFUSION: return videos[0], wavs[0], videos[1], wavs[1] return videos[0], wavs[0], None, None return videos[0], wavs[0] def toggle_diffusion(choice): if choice == "MultiBand_Diffusion": return [gr.update(visible=True)] * 2 else: return [gr.update(visible=False)] * 2 def ui_full(launch_kwargs): with gr.Blocks() as interface: gr.Markdown( """ # AudioGen This is your private demo for [AudioGen](https://github.com/facebookresearch/audiocraft/blob/main/docs/AUDIOGEN.md), a simple and controllable model for audio generation """ ) with gr.Row(): with gr.Column(): with gr.Row(): text = gr.Text(label="Input Text", interactive=True) with gr.Row(): submit = gr.Button("Submit") # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license. _ = gr.Button("Interrupt").click(fn=interrupt, queue=False) with gr.Row(): model = gr.Radio(["facebook/audiogen-medium"], label="Model", value="facebook/audiogen-medium", interactive=True) with gr.Row(): decoder = gr.Radio(["Default"], label="Decoder", value="Default", interactive=False) with gr.Row(): duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True) with gr.Row(): topk = gr.Number(label="Top-k", value=250, interactive=True) topp = gr.Number(label="Top-p", value=0, interactive=True) temperature = gr.Number(label="Temperature", value=1.0, interactive=True) cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True) with gr.Column(): output = gr.Video(label="Generated Audio") audio_output = gr.Audio(label="Generated Audio (wav)", type='filepath') submit.click(predict_full, inputs=[model, decoder, text, duration, topk, topp, temperature, cfg_coef], outputs=[output, audio_output]) interface.queue().launch(**launch_kwargs) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( '--listen', type=str, default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1', help='IP to listen on for connections to Gradio', ) parser.add_argument( '--username', type=str, default='', help='Username for authentication' ) parser.add_argument( '--password', type=str, default='', help='Password for authentication' ) parser.add_argument( '--server_port', type=int, default=0, help='Port to run the server listener on', ) parser.add_argument( '--inbrowser', action='store_true', help='Open in browser' ) parser.add_argument( '--share', action='store_true', help='Share the gradio UI' ) args = parser.parse_args() launch_kwargs = {} launch_kwargs['server_name'] = args.listen if args.username and args.password: launch_kwargs['auth'] = (args.username, args.password) if args.server_port: launch_kwargs['server_port'] = args.server_port if args.inbrowser: launch_kwargs['inbrowser'] = args.inbrowser if args.share: launch_kwargs['share'] = args.share # Show the interface ui_full(launch_kwargs)