from transformers import pipeline import gradio as gr import pandas as pd def coding_v1(model, text, codetext): classifier = pipeline("zero-shot-classification", model=model) codelist = codetext.split(';') output = classifier(text, codelist, multi_label=True) return output def coding(model, text, codetext): classifier = pipeline("zero-shot-classification", model=model) codelist = codetext.split(';') output = classifier(text, codelist, multi_label=True) # keys = output.labels # values = output.scores keys = output['labels'] values = output['scores'] my_dict = {k: v for k, v in zip(keys, values)} return my_dict def upload_code_list(file): df = pd.read_excel(file.name, sheet_name='code') joined_data = ';'.join(df['label'].astype(str)) return joined_data css = """ h2.svelte-1pq4gst{display:none} """ demo = gr.Blocks(css=css) with demo: gr.Markdown( """ # NuanceTree # Coding Test Program """ ) with gr.Row(): with gr.Column(): select_model = gr.Radio( [ "facebook/bart-large-mnli", "MoritzLaurer/multilingual-MiniLMv2-L6-mnli-xnli", "MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7", "MoritzLaurer/mDeBERTa-v3-base-mnli-xnli", "MoritzLaurer/deberta-v3-large-zeroshot-v2.0", ], value="MoritzLaurer/multilingual-MiniLMv2-L6-mnli-xnli", label="Model" ) comment_text = gr.TextArea( label='Comment', value='感覺性格溫和,特別係亞洲人的肌膚,不足之處就是感覺很少有優惠,價錢都比較貴' ) codelist_text = gr.Textbox( label='Code list (colon-separated)', value='非常好;很好;好滿意;價錢合理;實惠' ) with gr.Row(): clear_codelist_btn = gr.ClearButton(value="Clear Code List") clear_codelist_btn.click(lambda: None, outputs=[codelist_text]) upload_btn = gr.UploadButton( label="Upload", variant='primary' ) upload_btn.upload(upload_code_list, upload_btn, codelist_text) run_btn = gr.Button( value="Submit", variant='primary' ) with gr.Column(): #result_text = gr.JSON() result_label = gr.Label(show_label=False) run_btn.click(coding, [select_model, comment_text, codelist_text], result_label, scroll_to_output=True) if __name__ == "__main__": demo.launch()