import numpy as np # from Data_Generation.Shape_Generation_Functions import basic_box, diagonal_box_split, horizontal_vertical_box_split, \ # back_slash_box, forward_slash_box, back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, \ # x_hamburger_box, x_hot_dog_box, x_plus_box from Data_Generation.Piecewise_Box_Functions import basic_box_array, back_slash_array, forward_slash_array, hamburger_array, hot_dog_array # from Piecewise_Box_Functions import basic_box_array, back_slash_array, forward_slash_array, hamburger_array, hot_dog_array import matplotlib.pyplot as plt ######################################################################################################################## # Make the data using all the code in Shape_Generation_Functions.py def make_boxes(image_size, densities): """ :param image_size: [int] - the pixel height and width of the generated arrays :param densities: [list] - of the values of each of the active pixels in each shape :return: [list[tuple]] - [Array, Density, Thickness of each strut type] """ matrix = [] # Establish the maximum thickness for each type of strut max_vert = int(np.ceil(1 / 2 * image_size) - 2) max_diag = int(image_size - 3) max_basic = int(np.ceil(1 / 2 * image_size) - 1) # Adds different density values for i in range(len(densities)): for j in range(1, max_basic): # basic box loop, always want a border basic_box_thickness = j array_1 = basic_box_array(image_size, basic_box_thickness) if np.unique([array_1]).all() > 0: # Checks if there is a solid figure break for k in range(0, max_vert): hamburger_box_thickness = k array_2 = hamburger_array(image_size, hamburger_box_thickness) + array_1 array_2 = np.array(array_2 > 0, dtype=int) # Keep all values 0/1 if np.unique([array_2]).all() > 0: break for l in range(0, max_vert): hot_dog_box_thickness = l array_3 = hot_dog_array(image_size, hot_dog_box_thickness) + array_2 array_3 = np.array(array_3 > 0, dtype=int) if np.unique([array_3]).all() > 0: break for m in range(0, max_diag): forward_slash_box_thickness = m array_4 = forward_slash_array(image_size, forward_slash_box_thickness) + array_3 array_4 = np.array(array_4 > 0, dtype=int) if np.unique([array_4]).all() > 0: break for n in range(0, max_diag): back_slash_box_thickness = n array_5 = back_slash_array(image_size, back_slash_box_thickness) + array_4 array_5 = np.array(array_5 > 0, dtype=int) if np.unique([array_5]).all() > 0: break the_tuple = (array_5*densities[i], densities[i], basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness, hot_dog_box_thickness, hamburger_box_thickness) matrix.append(the_tuple) return matrix ########################################################################################################################