import matplotlib.pyplot as plt import numpy as np import streamlit as st from Data_Generation.Dataset_Generation_Functions import make_boxes from Data_Generation.Piecewise_Box_Functions import basic_box_array, forward_slash_array, combine_arrays, add_thickness ######################################################################################################################## # User Inputs image_size = st.slider('Select a value for the image size', min_value=9, max_value=28) # st.write(x, 'squared is', x * x) density_selection = st.slider('Select a value for the number of equally spaced density values (0, 1]', min_value=1, max_value=10) ######################################################################################################################## # Compute Example Shapes densities = np.linspace(0, 1, num=density_selection+1)[1:] sample_basic_box = basic_box_array(image_size, 1) sample_forward_slash_box = forward_slash_array(image_size, 1) sample_combined = combine_arrays([sample_forward_slash_box, sample_basic_box]) print(sample_combined) sample_density = np.array([sample_combined * density_value for density_value in densities]) # copy = sample_combined sample_thickness = [] # test = add_thickness(copy, 2) # sample_thickness.append(test) # print(sample_thickness) for i in [1, 2, 3, 4]: copy = sample_combined print(i) test = add_thickness(copy, i) print(test) sample_thickness.append(test) # print(sample_thickness) ######################################################################################################################## # Output Example Shapes st.write("Click 'Generate Samples' to show some density values that would exist in your dataset:") # Show samples of various density values if st.button('Generate Samples'): # Generate the samples plt.figure(1) st.header("Sample Density Figures:") max_figures = min(density_selection, 5) for i in range(max_figures): plt.subplot(1, max_figures+1, i+1), plt.imshow(sample_density[i], cmap='gray', vmin=0, vmax=1) if i != 0: # Show y-label for only first figure plt.tick_params(left=False, labelleft=False) plt.title("Density: " + str(round(densities[i], 4)), fontsize=6) plt.figure(1) # cax = plt.axes([0.85, 0.1, 0.075, 0.8]) # plt.colorbar(cax=cax, shrink=0.1) st.pyplot(plt.figure(1)) # Show samples of various thickness values st.header("Sample Thickness Figures:") plt.figure(2) for i in range(len(sample_thickness)): plt.subplot(1, 5, i+1), plt.imshow(sample_thickness[i], cmap='gray', vmin=0, vmax=1) if i != 0: # Show y-label for only first figure plt.tick_params(left=False, labelleft=False) plt.title("Thickness: " + str(i+1), fontsize=6) plt.figure(2) # cax = plt.axes([0.85, 0.1, 0.075, 0.8]) # plt.colorbar(cax=cax, shrink=0.1) st.pyplot(plt.figure(2)) ######################################################################################################################## # Output Generated Examples # plt.figure(2) # for j in range(5): # shows 5 random images to the users to view samples of the dataset # i = np.random.randint(0, len(result)) # plt.subplot(550 + 1 + j) # plt.imshow(result[i], cmap='gray', vmin=0, vmax=1) # plt.figure(2) # st.pyplot(plt.figure(2)) ''' # Testing image_size = 100 densities = [1] boxes = make_boxes(image_size, densities) desired_density = 1 # desired_thickness = 0 desired_basic_box_thickness = 1 desired_forward_slash_box_thickness = 2 desired_back_slash_box_thickness = 0 desired_hot_dog_box_thickness = 0 desired_hamburger_box_thickness = 0 box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness\ = list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3], list(zip(*boxes))[4], list(zip(*boxes))[5], list(zip(*boxes))[6] # print(np.shape(box_arrays)) # print(np.shape(box_shape)) # print(np.shape(box_density)) indices = [i for i in range(len(box_arrays)) if box_density[i] == desired_density and basic_box_thickness[i] == desired_basic_box_thickness and forward_slash_box_thickness[i] == desired_forward_slash_box_thickness and back_slash_box_thickness[i] == desired_back_slash_box_thickness and hot_dog_box_thickness[i] == desired_hot_dog_box_thickness and hamburger_box_thickness[i] == desired_hamburger_box_thickness] plt.imshow(box_arrays[indices[0]], cmap='gray', vmin=0, vmax=1) plt.show() ''' ''' # food = load_dataset("cmudrc/2d-lattices", split="train[:15]") # Loads the training data samples food = load_dataset("cmudrc/2d-lattices", split="train+test") # Loads all of the data, for use after training # checks to see if the dataset has been assigned a class label # if type(food.features["label"]) != 'datasets.features.features.ClassLabel': # Cast to ClassLabel # food = food.class_encode_column('label') print(food) desired_label = 'x_plus_box' desired_thickness = 3 desired_density = 1 data_frame = pd.DataFrame(food) # print(data_frame) shape_rows = data_frame['Shape'] == desired_label # print(shape_rows) thickness_rows = data_frame['Thickness'] == desired_thickness # print(thickness_rows) density_rows = data_frame['Density'] == desired_density # print(density_rows) desired_output = data_frame.loc[shape_rows & thickness_rows & density_rows].iloc[0]['Array'] print(desired_output) print(type(desired_output)) example_point = numpy.array(json.loads(desired_output)) plt.imshow(example_point) plt.show() all_shapes = [basic_box, diagonal_box_split, horizontal_vertical_box_split, back_slash_box, forward_slash_box, back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, x_hamburger_box, x_hot_dog_box, x_plus_box] base_shapes = [basic_box, back_slash_box, forward_slash_box, hot_dog_box, hamburger_box] image_size = 256 density = [1] boxes = make_boxes(image_size, density, all_shapes) box_arrays, box_shape, box_density, box_thickness, = list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3] # indices_1 = [i for i in range(len(boxes)) if boxes[1][i] == str(base_shapes[0]) and boxes[2][i] == density[0] and boxes[3][i] == desired_thickness] indices_1 = [i for i in range(len(box_arrays)) if box_shape[i] == desired_label and box_density[i] == desired_density and box_thickness[i] == desired_thickness] print(indices_1) # indices_1 = random.randint(0, len(box_arrays)) # plt.imshow(box_arrays[indices_1]) plt.imshow(box_arrays[indices_1[0]]) plt.show() ''' '''trainer.push_to_hub()''' # Need to figure out how to push the model to the hub