import numpy as np from scipy import signal def basic_box_array(image_size, thickness): A = np.ones((int(image_size), int(image_size))) # Initializes A matrix with 0 values A[1:-1, 1:-1] = 0 # replaces all internal rows/columns with 0's A = add_thickness(A, thickness) return A def back_slash_array(image_size, thickness): A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values np.fill_diagonal(A, 1) # fills the diagonal with 1 values A = add_thickness(A, thickness) return A def forward_slash_array(image_size, thickness): A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values np.fill_diagonal(np.fliplr(A), 1) # Flips the array to then fill the diagonal the opposite direction A = add_thickness(A, thickness) return A def hot_dog_array(image_size, thickness): # Places pixels down the vertical axis to split the box A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values A[:, np.floor((image_size - 1) / 2).astype(int)] = 1 # accounts for even and odd values of image_size A[:, np.ceil((image_size - 1) / 2).astype(int)] = 1 A = add_thickness(A, thickness) return A def hamburger_array(image_size, thickness): # Places pixels across the horizontal axis to split the box A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values A[np.floor((image_size - 1) / 2).astype(int), :] = 1 # accounts for even and odd values of image_size A[np.ceil((image_size - 1) / 2).astype(int), :] = 1 A = add_thickness(A, thickness) return A ######################################################################################################################## # The function to add thickness to struts in an array def add_thickness(array_original, thickness): A = array_original if thickness == 0: # want an array of all 0's for thickness = 0 A[A > 0] = 0 else: filter_size = 2*thickness - 1 # the size of the filter needs to extend far enough to reach the base shape filter = np.zeros((filter_size, filter_size)) filter[np.floor((filter_size - 1) / 2).astype(int), :] = filter[:, np.floor((filter_size - 1) / 2).astype(int)] =1 filter[np.ceil((filter_size - 1) / 2).astype(int), :] = filter[:, np.ceil((filter_size - 1) / 2).astype(int)] = 1 convolution = signal.convolve2d(A, filter, mode='same') A = np.where(convolution <= 1, convolution, 1) return A # The function to efficiently combine arrays in a list def combine_arrays(arrays): output_array = np.sum(arrays, axis=0) # Add the list of arrays output_array = np.array(output_array > 0, dtype=int) # Convert all values in array to 1 return output_array