marta-marta commited on
Commit
60acf32
·
1 Parent(s): 1fcdcb6

First commit

Browse files
.gitignore ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Created by .ignore support plugin (hsz.mobi)
2
+ ### Python template
3
+ # Byte-compiled / optimized / DLL files
4
+ __pycache__/
5
+ *.py[cod]
6
+ *$py.class
7
+
8
+ # C extensions
9
+ *.so
10
+
11
+ # Distribution / packaging
12
+ .Python
13
+ env/
14
+ build/
15
+ develop-eggs/
16
+ dist/
17
+ downloads/
18
+ eggs/
19
+ .eggs/
20
+ lib/
21
+ lib64/
22
+ parts/
23
+ sdist/
24
+ var/
25
+ *.egg-info/
26
+ .installed.cfg
27
+ *.egg
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .coverage
43
+ .coverage.*
44
+ .cache
45
+ nosetests.xml
46
+ coverage.xml
47
+ *,cover
48
+ .hypothesis/
49
+
50
+ # Translations
51
+ *.mo
52
+ *.pot
53
+
54
+ # Django stuff:
55
+ *.log
56
+ local_settings.py
57
+
58
+ # Flask stuff:
59
+ instance/
60
+ .webassets-cache
61
+
62
+ # Scrapy stuff:
63
+ .scrapy
64
+
65
+ # Sphinx documentation
66
+ docs/_build/
67
+
68
+ # PyBuilder
69
+ target/
70
+
71
+ # IPython Notebook
72
+ .ipynb_checkpoints
73
+
74
+ # pyenv
75
+ .python-version
76
+
77
+ # celery beat schedule file
78
+ celerybeat-schedule
79
+
80
+ # dotenv
81
+ .env
82
+
83
+ # virtualenv
84
+ venv/
85
+ ENV/
86
+
87
+ # Spyder project settings
88
+ .spyderproject
89
+
90
+ # Rope project settings
91
+ .ropeproject
92
+ ### VirtualEnv template
93
+ # Virtualenv
94
+ # http://iamzed.com/2009/05/07/a-primer-on-virtualenv/
95
+ [Bb]in
96
+ [Ii]nclude
97
+ [Ll]ib
98
+ [Ll]ib64
99
+ [Ll]ocal
100
+ [Ss]cripts
101
+ pyvenv.cfg
102
+ .venv
103
+ pip-selfcheck.json
104
+
105
+ ### JetBrains template
106
+ # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio, WebStorm and Rider
107
+ # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
108
+
109
+ # User-specific stuff
110
+ .idea/**/workspace.xml
111
+ .idea/**/tasks.xml
112
+ .idea/**/usage.statistics.xml
113
+ .idea/**/dictionaries
114
+ .idea/**/shelf
115
+
116
+ # AWS User-specific
117
+ .idea/**/aws.xml
118
+
119
+ # Generated files
120
+ .idea/**/contentModel.xml
121
+
122
+ # Sensitive or high-churn files
123
+ .idea/**/dataSources/
124
+ .idea/**/dataSources.ids
125
+ .idea/**/dataSources.local.xml
126
+ .idea/**/sqlDataSources.xml
127
+ .idea/**/dynamic.xml
128
+ .idea/**/uiDesigner.xml
129
+ .idea/**/dbnavigator.xml
130
+
131
+ # Gradle
132
+ .idea/**/gradle.xml
133
+ .idea/**/libraries
134
+
135
+ # Gradle and Maven with auto-import
136
+ # When using Gradle or Maven with auto-import, you should exclude module files,
137
+ # since they will be recreated, and may cause churn. Uncomment if using
138
+ # auto-import.
139
+ # .idea/artifacts
140
+ # .idea/compiler.xml
141
+ # .idea/jarRepositories.xml
142
+ # .idea/modules.xml
143
+ # .idea/*.iml
144
+ # .idea/modules
145
+ # *.iml
146
+ # *.ipr
147
+
148
+ # CMake
149
+ cmake-build-*/
150
+
151
+ # Mongo Explorer plugin
152
+ .idea/**/mongoSettings.xml
153
+
154
+ # File-based project format
155
+ *.iws
156
+
157
+ # IntelliJ
158
+ out/
159
+
160
+ # mpeltonen/sbt-idea plugin
161
+ .idea_modules/
162
+
163
+ # JIRA plugin
164
+ atlassian-ide-plugin.xml
165
+
166
+ # Cursive Clojure plugin
167
+ .idea/replstate.xml
168
+
169
+ # SonarLint plugin
170
+ .idea/sonarlint/
171
+
172
+ # Crashlytics plugin (for Android Studio and IntelliJ)
173
+ com_crashlytics_export_strings.xml
174
+ crashlytics.properties
175
+ crashlytics-build.properties
176
+ fabric.properties
177
+
178
+ # Editor-based Rest Client
179
+ .idea/httpRequests
180
+
181
+ # Android studio 3.1+ serialized cache file
182
+ .idea/caches/build_file_checksums.ser
183
+
184
+ # idea folder, uncomment if you don't need it
185
+ # .idea
.idea/.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # Default ignored files
2
+ /shelf/
3
+ /workspace.xml
.idea/.name ADDED
@@ -0,0 +1 @@
 
 
1
+ 2D_Data_Generator_Model.py
.idea/2D_Data_Generator.iml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <module type="PYTHON_MODULE" version="4">
3
+ <component name="NewModuleRootManager">
4
+ <content url="file://$MODULE_DIR$" />
5
+ <orderEntry type="inheritedJdk" />
6
+ <orderEntry type="sourceFolder" forTests="false" />
7
+ </component>
8
+ </module>
.idea/inspectionProfiles/profiles_settings.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <settings>
3
+ <option name="USE_PROJECT_PROFILE" value="false" />
4
+ <version value="1.0" />
5
+ </settings>
6
+ </component>
.idea/misc.xml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10 (Transformer_Testing)" project-jdk-type="Python SDK" />
4
+ </project>
.idea/modules.xml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="ProjectModuleManager">
4
+ <modules>
5
+ <module fileurl="file://$PROJECT_DIR$/.idea/2D_Data_Generator.iml" filepath="$PROJECT_DIR$/.idea/2D_Data_Generator.iml" />
6
+ </modules>
7
+ </component>
8
+ </project>
.idea/vcs.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="VcsDirectoryMappings">
4
+ <mapping directory="$PROJECT_DIR$" vcs="Git" />
5
+ </component>
6
+ </project>
2D_Data_Generator_Model.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+
3
+ import matplotlib.pyplot as plt
4
+ import pandas as pd
5
+ from datasets import load_dataset, ClassLabel, Sequence
6
+ import json
7
+ import numpy
8
+ from transformers import AutoImageProcessor
9
+ from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor
10
+ from transformers import DefaultDataCollator
11
+ # import evaluate
12
+ import numpy as np
13
+ from transformers import AutoModelForImageClassification, TrainingArguments, Trainer
14
+ from PIL import Image
15
+ from matplotlib import cm
16
+ from Data_Generation.Shape_Generation_Functions import basic_box, diagonal_box_split, horizontal_vertical_box_split, \
17
+ back_slash_box, forward_slash_box, back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, \
18
+ x_hamburger_box, x_hot_dog_box, x_plus_box
19
+
20
+ from Data_Generation.Dataset_Generation_Functions import make_boxes
21
+
22
+
23
+
24
+ # food = load_dataset("cmudrc/2d-lattices", split="train[:15]") # Loads the training data samples
25
+ food = load_dataset("cmudrc/2d-lattices", split="train+test") # Loads all of the data, for use after training
26
+
27
+ # checks to see if the dataset has been assigned a class label
28
+ # if type(food.features["label"]) != 'datasets.features.features.ClassLabel': # Cast to ClassLabel
29
+ # food = food.class_encode_column('label')
30
+ print(food)
31
+ desired_label = 'x_hot_dog_box'
32
+ desired_thickness = 1
33
+ desired_density = 1
34
+
35
+ data_frame = pd.DataFrame(food)
36
+ # print(data_frame)
37
+
38
+ shape_rows = data_frame['Shape'] == desired_label
39
+ # print(shape_rows)
40
+
41
+ thickness_rows = data_frame['Thickness'] == desired_thickness
42
+ # print(thickness_rows)
43
+
44
+ density_rows = data_frame['Density'] == desired_density
45
+ # print(density_rows)
46
+
47
+ desired_output = data_frame.loc[shape_rows & thickness_rows & density_rows].iloc[0]['Array']
48
+ print(desired_output)
49
+ print(type(desired_output))
50
+
51
+
52
+ example_point = numpy.array(json.loads(desired_output))
53
+
54
+ plt.imshow(example_point)
55
+ plt.show()
56
+
57
+
58
+ all_shapes = [basic_box, diagonal_box_split, horizontal_vertical_box_split, back_slash_box, forward_slash_box,
59
+ back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, x_hamburger_box,
60
+ x_hot_dog_box, x_plus_box]
61
+
62
+ base_shapes = [basic_box, back_slash_box, forward_slash_box, hot_dog_box, hamburger_box]
63
+ image_size = 11
64
+ density = [1]
65
+
66
+ boxes = make_boxes(image_size, density, all_shapes)
67
+
68
+
69
+ box_arrays, box_shape, box_density, box_thickness, = list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3]
70
+
71
+ # indices_1 = [i for i in range(len(boxes)) if boxes[1][i] == str(base_shapes[0]) and boxes[2][i] == density[0] and boxes[3][i] == desired_thickness]
72
+ indices_1 = [i for i in range(len(box_arrays)) if box_shape[i] == desired_label and box_density[i] == desired_density and box_thickness[i] == desired_thickness]
73
+ print(indices_1)
74
+ # indices_1 = random.randint(0, len(box_arrays))
75
+
76
+
77
+ # plt.imshow(box_arrays[indices_1])
78
+ plt.imshow(box_arrays[indices_1[0]])
79
+ plt.show()
80
+
81
+
82
+ '''trainer.push_to_hub()''' # Need to figure out how to push the model to the hub
Data_Generation/Dataset_Generation_Functions.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ ########################################################################################################################
5
+ # Make the data using all the code in Shape_Generation_Functions.py
6
+ def make_boxes(image_size, densities, shapes):
7
+ """
8
+ :param image_size: [int] - the pixel height and width of the generated arrays
9
+ :param densities: [list] - of the values of each of the active pixels in each shape
10
+ :param shapes: [list] - of the various shapes desired for the dataset
11
+ :return: [list[tuple]] - [Array, Density, Thickness, Shape]
12
+ """
13
+
14
+ matrix = []
15
+
16
+ for function in shapes: # Adds different types of shapes
17
+
18
+ # Adds different density values
19
+ for i in range(len(densities)):
20
+ # Loops through the possible thickness values
21
+ for j in range(image_size): # Adds additional Pixels
22
+ thickness = j
23
+ Array = (function(thickness, densities[i], image_size))
24
+
25
+ # Checks if there are any 0's left in the array to append
26
+ if (np.where((Array == float(0)))[0] > 0).any():
27
+ the_tuple = (Array, str(function.__name__), densities[i], thickness)
28
+ matrix.append(the_tuple)
29
+
30
+ # Prevents solids shapes from being appended to the array
31
+ else:
32
+ break
33
+ return matrix
34
+
35
+
36
+ ########################################################################################################################
37
+
38
+
Data_Generation/Piecewise_Box_Functions.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import math
3
+
4
+
5
+ def basic_box_array(image_size):
6
+ A = np.ones((int(image_size), int(image_size))) # Initializes A matrix with 0 values
7
+ # Creates the outside edges of the box
8
+ # for i in range(image_size):
9
+ # for j in range(image_size):
10
+ # if i == 0 or j == 0 or i == image_size - 1 or j == image_size - 1:
11
+ # A[i][j] = 1
12
+ # A[1:-1, 1:-1] = 1
13
+ # np.pad(A[1:-1,1:-1], pad_width=((1, 1), (1, 1)), mode='constant', constant_values=1)
14
+ A[1:-1, 1:-1] = 0
15
+ return A
16
+
17
+
18
+ def back_slash_array(image_size):
19
+ A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
20
+ # for i in range(image_size):
21
+ # for j in range(image_size):
22
+ # if i == j:
23
+ # A[i][j] = 1
24
+ np.fill_diagonal(A, 1)
25
+
26
+ return A
27
+
28
+
29
+ def forward_slash_array(image_size):
30
+ A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
31
+ # for i in range(image_size):
32
+ # for j in range(image_size):
33
+ # if i == (image_size-1)-j:
34
+ # A[i][j] = 1
35
+ np.fill_diagonal(np.fliplr(A), 1)
36
+ return A
37
+
38
+
39
+ def hot_dog_array(image_size):
40
+ # Places pixels down the vertical axis to split the box
41
+ A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
42
+ # for i in range(image_size):
43
+ # for j in range(image_size):
44
+ # if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2):
45
+ # A[i][j] = 1
46
+
47
+ A[:, np.floor((image_size - 1) / 2).astype(int)] = 1
48
+ A[:, np.ceil((image_size - 1) / 2).astype(int)] = 1
49
+ return A
50
+
51
+
52
+ def hamburger_array(image_size):
53
+ # Places pixels across the horizontal axis to split the box
54
+ A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
55
+ # for i in range(image_size):
56
+ # for j in range(image_size):
57
+ # if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2):
58
+ # A[i][j] = 1
59
+ A[np.floor((image_size - 1) / 2).astype(int), :] = 1
60
+ A[np.ceil((image_size - 1) / 2).astype(int), :] = 1
61
+ return A
62
+
63
+
64
+ # def update_array(array_original, array_new, image_size):
65
+ # A = array_original
66
+ # for i in range(image_size):
67
+ # for j in range(image_size):
68
+ # if array_new[i][j] == 1:
69
+ # A[i][j] = 1
70
+ # return A
71
+ def update_array(array_original, array_new, image_size):
72
+ A = array_original
73
+ A[array_new == 1] = 1
74
+ return A
75
+
76
+
77
+ def add_pixels(array_original, additional_pixels, image_size):
78
+ # Adds pixels to the thickness of each component of the box
79
+ A = array_original
80
+ A_updated = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
81
+ for dens in range(additional_pixels):
82
+ for i in range(1, image_size - 1):
83
+ for j in range(1, image_size - 1):
84
+ if A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1] > 0:
85
+ A_updated[i][j] = 1
86
+ A = update_array(A, A_updated,image_size)
87
+ return A
88
+
Data_Generation/Shape_Generation_Functions.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from Data_Generation.Piecewise_Box_Functions import back_slash_array, basic_box_array, forward_slash_array, \
2
+ hot_dog_array, hamburger_array, update_array, add_pixels
3
+
4
+
5
+ ########################################################################################################################
6
+ # Series of Basic Box Shapes
7
+
8
+ def basic_box(additional_pixels, density, image_size):
9
+ A = basic_box_array(image_size) # Creates the outside edges of the box
10
+ # Increase the thickness of each part of the box
11
+ A = add_pixels(A, additional_pixels, image_size)
12
+ return A*density
13
+
14
+
15
+ def horizontal_vertical_box_split(additional_pixels, density, image_size):
16
+ A = basic_box_array(image_size) # Creates the outside edges of the box
17
+ # Place pixels across the horizontal and vertical axes to split the box
18
+ A = update_array(A, hot_dog_array(image_size), image_size)
19
+ A = update_array(A, hamburger_array(image_size), image_size)
20
+ # Increase the thickness of each part of the box
21
+ A = add_pixels(A, additional_pixels, image_size)
22
+ return A*density
23
+
24
+
25
+ def diagonal_box_split(additional_pixels, density, image_size):
26
+ A = basic_box_array(image_size) # Creates the outside edges of the box
27
+
28
+ # Add pixels along the diagonals of the box
29
+ A = update_array(A, back_slash_array(image_size), image_size)
30
+ A = update_array(A, forward_slash_array(image_size), image_size)
31
+
32
+ # Adds pixels to the thickness of each component of the box
33
+ # Increase the thickness of each part of the box
34
+ A = add_pixels(A, additional_pixels, image_size)
35
+ return A*density
36
+
37
+
38
+ def back_slash_box(additional_pixels, density, image_size):
39
+ A = basic_box_array(image_size) # Initializes A matrix with 0 values
40
+ A = update_array(A, back_slash_array(image_size), image_size)
41
+ A = add_pixels(A, additional_pixels, image_size)
42
+ return A * density
43
+
44
+
45
+ def forward_slash_box(additional_pixels, density, image_size):
46
+ A = basic_box_array(image_size) # Initializes A matrix with 0 values
47
+ A = update_array(A, forward_slash_array(image_size), image_size)
48
+ A = add_pixels(A, additional_pixels, image_size)
49
+ return A * density
50
+
51
+
52
+ def hot_dog_box(additional_pixels, density, image_size):
53
+ A = basic_box_array(image_size) # Initializes A matrix with 0 values
54
+ A = update_array(A, hot_dog_array(image_size), image_size)
55
+ A = add_pixels(A, additional_pixels, image_size)
56
+ return A * density
57
+
58
+
59
+ def hamburger_box(additional_pixels, density, image_size):
60
+ A = basic_box_array(image_size) # Initializes A matrix with 0 values
61
+ A = update_array(A, hamburger_array(image_size), image_size)
62
+ A = add_pixels(A, additional_pixels, image_size)
63
+ return A * density
64
+
65
+
66
+ def x_plus_box(additional_pixels, density, image_size):
67
+ A = basic_box_array(image_size) # Initializes A matrix with 0 values
68
+ A = update_array(A, hot_dog_array(image_size), image_size)
69
+ A = update_array(A, hamburger_array(image_size), image_size)
70
+ A = update_array(A, forward_slash_array(image_size), image_size)
71
+ A = update_array(A, back_slash_array(image_size), image_size)
72
+ A = add_pixels(A, additional_pixels, image_size)
73
+ return A * density
74
+
75
+
76
+ def forward_slash_plus_box(additional_pixels, density, image_size):
77
+ A = basic_box_array(image_size) # Initializes A matrix with 0 values
78
+ A = update_array(A, hot_dog_array(image_size), image_size)
79
+ A = update_array(A, hamburger_array(image_size), image_size)
80
+ A = update_array(A, forward_slash_array(image_size), image_size)
81
+ # A = update_array(A, back_slash_array(image_size), image_size)
82
+ A = add_pixels(A, additional_pixels, image_size)
83
+ return A * density
84
+
85
+
86
+ def back_slash_plus_box(additional_pixels, density, image_size):
87
+ A = basic_box_array(image_size) # Initializes A matrix with 0 values
88
+ A = update_array(A, hot_dog_array(image_size), image_size)
89
+ A = update_array(A, hamburger_array(image_size), image_size)
90
+ A = update_array(A, back_slash_array(image_size), image_size)
91
+ A = add_pixels(A, additional_pixels, image_size)
92
+ return A * density
93
+
94
+
95
+ def x_hot_dog_box(additional_pixels, density, image_size):
96
+ A = basic_box_array(image_size) # Initializes A matrix with 0 values
97
+ A = update_array(A, hot_dog_array(image_size), image_size)
98
+ A = update_array(A, forward_slash_array(image_size), image_size)
99
+ A = update_array(A, back_slash_array(image_size), image_size)
100
+ A = add_pixels(A, additional_pixels, image_size)
101
+ return A * density
102
+
103
+
104
+ def x_hamburger_box(additional_pixels, density, image_size):
105
+ A = basic_box_array(image_size) # Initializes A matrix with 0 values
106
+ A = update_array(A, hamburger_array(image_size), image_size)
107
+ A = update_array(A, forward_slash_array(image_size), image_size)
108
+ A = update_array(A, back_slash_array(image_size), image_size)
109
+ A = add_pixels(A, additional_pixels, image_size)
110
+ return A * density
111
+
requirements.txt ADDED
Binary file (40.9 kB). View file