Commit
·
4b69d10
1
Parent(s):
283cfa3
finalize
Browse files
app.py
CHANGED
|
@@ -69,56 +69,9 @@ if st.button('Generate Samples'): # Generate the samples
|
|
| 69 |
# plt.colorbar(cax=cax, shrink=0.1)
|
| 70 |
st.pyplot(plt.figure(2))
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
########################################################################################################################
|
| 75 |
-
# Output
|
| 76 |
-
|
| 77 |
-
# plt.figure(2)
|
| 78 |
-
# for j in range(5): # shows 5 random images to the users to view samples of the dataset
|
| 79 |
-
# i = np.random.randint(0, len(result))
|
| 80 |
-
# plt.subplot(550 + 1 + j)
|
| 81 |
-
# plt.imshow(result[i], cmap='gray', vmin=0, vmax=1)
|
| 82 |
-
# plt.figure(2)
|
| 83 |
-
# st.pyplot(plt.figure(2))
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
'''
|
| 87 |
-
# Testing
|
| 88 |
-
image_size = 100
|
| 89 |
-
densities = [1]
|
| 90 |
-
|
| 91 |
-
boxes = make_boxes(image_size, densities)
|
| 92 |
-
|
| 93 |
-
desired_density = 1
|
| 94 |
-
# desired_thickness = 0
|
| 95 |
-
|
| 96 |
-
desired_basic_box_thickness = 1
|
| 97 |
-
desired_forward_slash_box_thickness = 2
|
| 98 |
-
desired_back_slash_box_thickness = 0
|
| 99 |
-
desired_hot_dog_box_thickness = 0
|
| 100 |
-
desired_hamburger_box_thickness = 0
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness\
|
| 104 |
-
= list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3], list(zip(*boxes))[4], list(zip(*boxes))[5], list(zip(*boxes))[6]
|
| 105 |
-
# print(np.shape(box_arrays))
|
| 106 |
-
# print(np.shape(box_shape))
|
| 107 |
-
# print(np.shape(box_density))
|
| 108 |
-
|
| 109 |
-
indices = [i for i in range(len(box_arrays)) if box_density[i] == desired_density
|
| 110 |
-
and basic_box_thickness[i] == desired_basic_box_thickness
|
| 111 |
-
and forward_slash_box_thickness[i] == desired_forward_slash_box_thickness
|
| 112 |
-
and back_slash_box_thickness[i] == desired_back_slash_box_thickness
|
| 113 |
-
and hot_dog_box_thickness[i] == desired_hot_dog_box_thickness
|
| 114 |
-
and hamburger_box_thickness[i] == desired_hamburger_box_thickness]
|
| 115 |
-
plt.imshow(box_arrays[indices[0]], cmap='gray', vmin=0, vmax=1)
|
| 116 |
-
plt.show()
|
| 117 |
-
'''
|
| 118 |
-
# # Testing
|
| 119 |
-
# image_size = 8
|
| 120 |
-
# densities = [1]
|
| 121 |
-
|
| 122 |
if st.button('Generate Dataset'): # Generate the samples
|
| 123 |
boxes = make_boxes(image_size, densities)
|
| 124 |
box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness\
|
|
@@ -130,67 +83,8 @@ if st.button('Generate Dataset'): # Generate the samples
|
|
| 130 |
# Rename the columns to the desired outputs
|
| 131 |
dataframe = dataframe.rename(columns={0: "Array", 1: "Density", 2:"Basic Box Thickness", 3:"Forward Slash Strut Thickness", 4:"Back Slash Strut Thickness", 5:"Vertical Strut Thickness", 6:"Horizontal Strut Thickness"})
|
| 132 |
|
| 133 |
-
csv = dataframe.to_csv(
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
st.download_button("Download Dataset", csv, file_name='2D_Lattice.csv')
|
| 136 |
-
'''
|
| 137 |
-
|
| 138 |
-
# food = load_dataset("cmudrc/2d-lattices", split="train[:15]") # Loads the training data samples
|
| 139 |
-
food = load_dataset("cmudrc/2d-lattices", split="train+test") # Loads all of the data, for use after training
|
| 140 |
-
|
| 141 |
-
# checks to see if the dataset has been assigned a class label
|
| 142 |
-
# if type(food.features["label"]) != 'datasets.features.features.ClassLabel': # Cast to ClassLabel
|
| 143 |
-
# food = food.class_encode_column('label')
|
| 144 |
-
print(food)
|
| 145 |
-
desired_label = 'x_plus_box'
|
| 146 |
-
desired_thickness = 3
|
| 147 |
-
desired_density = 1
|
| 148 |
-
|
| 149 |
-
data_frame = pd.DataFrame(food)
|
| 150 |
-
# print(data_frame)
|
| 151 |
-
|
| 152 |
-
shape_rows = data_frame['Shape'] == desired_label
|
| 153 |
-
# print(shape_rows)
|
| 154 |
-
|
| 155 |
-
thickness_rows = data_frame['Thickness'] == desired_thickness
|
| 156 |
-
# print(thickness_rows)
|
| 157 |
-
|
| 158 |
-
density_rows = data_frame['Density'] == desired_density
|
| 159 |
-
# print(density_rows)
|
| 160 |
-
|
| 161 |
-
desired_output = data_frame.loc[shape_rows & thickness_rows & density_rows].iloc[0]['Array']
|
| 162 |
-
print(desired_output)
|
| 163 |
-
print(type(desired_output))
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
example_point = numpy.array(json.loads(desired_output))
|
| 167 |
-
|
| 168 |
-
plt.imshow(example_point)
|
| 169 |
-
plt.show()
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
all_shapes = [basic_box, diagonal_box_split, horizontal_vertical_box_split, back_slash_box, forward_slash_box,
|
| 173 |
-
back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, x_hamburger_box,
|
| 174 |
-
x_hot_dog_box, x_plus_box]
|
| 175 |
-
|
| 176 |
-
base_shapes = [basic_box, back_slash_box, forward_slash_box, hot_dog_box, hamburger_box]
|
| 177 |
-
image_size = 256
|
| 178 |
-
density = [1]
|
| 179 |
-
|
| 180 |
-
boxes = make_boxes(image_size, density, all_shapes)
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
box_arrays, box_shape, box_density, box_thickness, = list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3]
|
| 184 |
-
|
| 185 |
-
# indices_1 = [i for i in range(len(boxes)) if boxes[1][i] == str(base_shapes[0]) and boxes[2][i] == density[0] and boxes[3][i] == desired_thickness]
|
| 186 |
-
indices_1 = [i for i in range(len(box_arrays)) if box_shape[i] == desired_label and box_density[i] == desired_density and box_thickness[i] == desired_thickness]
|
| 187 |
-
print(indices_1)
|
| 188 |
-
# indices_1 = random.randint(0, len(box_arrays))
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
# plt.imshow(box_arrays[indices_1])
|
| 192 |
-
plt.imshow(box_arrays[indices_1[0]])
|
| 193 |
-
plt.show()
|
| 194 |
-
'''
|
| 195 |
-
|
| 196 |
-
'''trainer.push_to_hub()''' # Need to figure out how to push the model to the hub
|
|
|
|
| 69 |
# plt.colorbar(cax=cax, shrink=0.1)
|
| 70 |
st.pyplot(plt.figure(2))
|
| 71 |
|
|
|
|
|
|
|
| 72 |
########################################################################################################################
|
| 73 |
+
# Output Entire Dataset
|
| 74 |
+
st.write("Click 'Generate Dataset' to generate the dataset based on the conditions set previously:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
if st.button('Generate Dataset'): # Generate the samples
|
| 76 |
boxes = make_boxes(image_size, densities)
|
| 77 |
box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness\
|
|
|
|
| 83 |
# Rename the columns to the desired outputs
|
| 84 |
dataframe = dataframe.rename(columns={0: "Array", 1: "Density", 2:"Basic Box Thickness", 3:"Forward Slash Strut Thickness", 4:"Back Slash Strut Thickness", 5:"Vertical Strut Thickness", 6:"Horizontal Strut Thickness"})
|
| 85 |
|
| 86 |
+
csv = dataframe.to_csv()
|
| 87 |
+
st.write("Here is what the generated data looks like (double click on the 'Array' cells to view the full array):")
|
| 88 |
+
st.write(dataframe) # Display the data generated
|
| 89 |
+
st.write("Click 'Download' to download a CSV file of the dataset:")
|
| 90 |
st.download_button("Download Dataset", csv, file_name='2D_Lattice.csv')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|