marta-marta commited on
Commit
4b69d10
·
1 Parent(s): 283cfa3
Files changed (1) hide show
  1. app.py +6 -112
app.py CHANGED
@@ -69,56 +69,9 @@ if st.button('Generate Samples'): # Generate the samples
69
  # plt.colorbar(cax=cax, shrink=0.1)
70
  st.pyplot(plt.figure(2))
71
 
72
-
73
-
74
  ########################################################################################################################
75
- # Output Generated Examples
76
-
77
- # plt.figure(2)
78
- # for j in range(5): # shows 5 random images to the users to view samples of the dataset
79
- # i = np.random.randint(0, len(result))
80
- # plt.subplot(550 + 1 + j)
81
- # plt.imshow(result[i], cmap='gray', vmin=0, vmax=1)
82
- # plt.figure(2)
83
- # st.pyplot(plt.figure(2))
84
-
85
-
86
- '''
87
- # Testing
88
- image_size = 100
89
- densities = [1]
90
-
91
- boxes = make_boxes(image_size, densities)
92
-
93
- desired_density = 1
94
- # desired_thickness = 0
95
-
96
- desired_basic_box_thickness = 1
97
- desired_forward_slash_box_thickness = 2
98
- desired_back_slash_box_thickness = 0
99
- desired_hot_dog_box_thickness = 0
100
- desired_hamburger_box_thickness = 0
101
-
102
-
103
- box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness\
104
- = list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3], list(zip(*boxes))[4], list(zip(*boxes))[5], list(zip(*boxes))[6]
105
- # print(np.shape(box_arrays))
106
- # print(np.shape(box_shape))
107
- # print(np.shape(box_density))
108
-
109
- indices = [i for i in range(len(box_arrays)) if box_density[i] == desired_density
110
- and basic_box_thickness[i] == desired_basic_box_thickness
111
- and forward_slash_box_thickness[i] == desired_forward_slash_box_thickness
112
- and back_slash_box_thickness[i] == desired_back_slash_box_thickness
113
- and hot_dog_box_thickness[i] == desired_hot_dog_box_thickness
114
- and hamburger_box_thickness[i] == desired_hamburger_box_thickness]
115
- plt.imshow(box_arrays[indices[0]], cmap='gray', vmin=0, vmax=1)
116
- plt.show()
117
- '''
118
- # # Testing
119
- # image_size = 8
120
- # densities = [1]
121
-
122
  if st.button('Generate Dataset'): # Generate the samples
123
  boxes = make_boxes(image_size, densities)
124
  box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness\
@@ -130,67 +83,8 @@ if st.button('Generate Dataset'): # Generate the samples
130
  # Rename the columns to the desired outputs
131
  dataframe = dataframe.rename(columns={0: "Array", 1: "Density", 2:"Basic Box Thickness", 3:"Forward Slash Strut Thickness", 4:"Back Slash Strut Thickness", 5:"Vertical Strut Thickness", 6:"Horizontal Strut Thickness"})
132
 
133
- csv = dataframe.to_csv('2D_Lattice.csv')
134
-
 
 
135
  st.download_button("Download Dataset", csv, file_name='2D_Lattice.csv')
136
- '''
137
-
138
- # food = load_dataset("cmudrc/2d-lattices", split="train[:15]") # Loads the training data samples
139
- food = load_dataset("cmudrc/2d-lattices", split="train+test") # Loads all of the data, for use after training
140
-
141
- # checks to see if the dataset has been assigned a class label
142
- # if type(food.features["label"]) != 'datasets.features.features.ClassLabel': # Cast to ClassLabel
143
- # food = food.class_encode_column('label')
144
- print(food)
145
- desired_label = 'x_plus_box'
146
- desired_thickness = 3
147
- desired_density = 1
148
-
149
- data_frame = pd.DataFrame(food)
150
- # print(data_frame)
151
-
152
- shape_rows = data_frame['Shape'] == desired_label
153
- # print(shape_rows)
154
-
155
- thickness_rows = data_frame['Thickness'] == desired_thickness
156
- # print(thickness_rows)
157
-
158
- density_rows = data_frame['Density'] == desired_density
159
- # print(density_rows)
160
-
161
- desired_output = data_frame.loc[shape_rows & thickness_rows & density_rows].iloc[0]['Array']
162
- print(desired_output)
163
- print(type(desired_output))
164
-
165
-
166
- example_point = numpy.array(json.loads(desired_output))
167
-
168
- plt.imshow(example_point)
169
- plt.show()
170
-
171
-
172
- all_shapes = [basic_box, diagonal_box_split, horizontal_vertical_box_split, back_slash_box, forward_slash_box,
173
- back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, x_hamburger_box,
174
- x_hot_dog_box, x_plus_box]
175
-
176
- base_shapes = [basic_box, back_slash_box, forward_slash_box, hot_dog_box, hamburger_box]
177
- image_size = 256
178
- density = [1]
179
-
180
- boxes = make_boxes(image_size, density, all_shapes)
181
-
182
-
183
- box_arrays, box_shape, box_density, box_thickness, = list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3]
184
-
185
- # indices_1 = [i for i in range(len(boxes)) if boxes[1][i] == str(base_shapes[0]) and boxes[2][i] == density[0] and boxes[3][i] == desired_thickness]
186
- indices_1 = [i for i in range(len(box_arrays)) if box_shape[i] == desired_label and box_density[i] == desired_density and box_thickness[i] == desired_thickness]
187
- print(indices_1)
188
- # indices_1 = random.randint(0, len(box_arrays))
189
-
190
-
191
- # plt.imshow(box_arrays[indices_1])
192
- plt.imshow(box_arrays[indices_1[0]])
193
- plt.show()
194
- '''
195
-
196
- '''trainer.push_to_hub()''' # Need to figure out how to push the model to the hub
 
69
  # plt.colorbar(cax=cax, shrink=0.1)
70
  st.pyplot(plt.figure(2))
71
 
 
 
72
  ########################################################################################################################
73
+ # Output Entire Dataset
74
+ st.write("Click 'Generate Dataset' to generate the dataset based on the conditions set previously:")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  if st.button('Generate Dataset'): # Generate the samples
76
  boxes = make_boxes(image_size, densities)
77
  box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness\
 
83
  # Rename the columns to the desired outputs
84
  dataframe = dataframe.rename(columns={0: "Array", 1: "Density", 2:"Basic Box Thickness", 3:"Forward Slash Strut Thickness", 4:"Back Slash Strut Thickness", 5:"Vertical Strut Thickness", 6:"Horizontal Strut Thickness"})
85
 
86
+ csv = dataframe.to_csv()
87
+ st.write("Here is what the generated data looks like (double click on the 'Array' cells to view the full array):")
88
+ st.write(dataframe) # Display the data generated
89
+ st.write("Click 'Download' to download a CSV file of the dataset:")
90
  st.download_button("Download Dataset", csv, file_name='2D_Lattice.csv')