marta-marta commited on
Commit
2793e0d
·
1 Parent(s): a3e02cb

Finalizing notes and type hints

Browse files
Files changed (2) hide show
  1. Data_Plotting/Plot_TSNE.py +11 -10
  2. app.py +1 -3
Data_Plotting/Plot_TSNE.py CHANGED
@@ -6,15 +6,10 @@ import numpy as np
6
  # Latent Feature Cluster for Training Data using T-SNE
7
  def TSNE_reduction(latent_points: np.ndarray, perplexity=30, learning_rate=20):
8
  """
9
- :param latent_points: [ndarray] - an array of arrays that define the points of an object in the latent space
10
- :param perplexity: [int] - default perplexity = 30 " Perplexity balances the attention t-SNE gives to local and
11
- global aspects of the data. It is roughly a guess of the number of close neighbors each point has...
12
- a denser dataset ... requires higher perplexity value" Recommended: Perplexity(5-50)
13
- :param learning_rate: [int] - default learning rate = 200 "If the learning rate is too high, the data may look
14
- like a ‘ball’ with any point approximately equidistant from its nearest neighbours.
15
- If the learning rate is too low, most points may look compressed in a dense cloud with few outliers."
16
- Recommended: learning_rate(10-1000)
17
- :return: [tuple] - the output is the x and y coordinates for the reduced latent space, a title, and an embedding
18
  """
19
  model = TSNE(n_components=2, random_state=0, perplexity=perplexity,
20
  learning_rate=learning_rate)
@@ -31,8 +26,14 @@ def TSNE_reduction(latent_points: np.ndarray, perplexity=30, learning_rate=20):
31
 
32
 
33
  def plot_dimensionality_reduction(x: list, y: list, label_set: list, title: str):
 
 
 
 
 
 
34
  plt.title(title)
35
- # Color points based on their density
36
  if label_set[0].dtype == float:
37
  plt.scatter(x, y, c=label_set)
38
  cbar = plt.colorbar()
 
6
  # Latent Feature Cluster for Training Data using T-SNE
7
  def TSNE_reduction(latent_points: np.ndarray, perplexity=30, learning_rate=20):
8
  """
9
+ :param latent_points: [ndarray] - an array of arrays that define the points of multiple objects in the latent space
10
+ :param perplexity: [int] - default perplexity = 30 " Perplexity balances the attention t-SNE gives to local and global aspects of the data. It is roughly a guess of the number of close neighbors each point has... a denser dataset ... requires higher perplexity value" Recommended: Perplexity(5-50)
11
+ :param learning_rate: [int] - default learning rate = 200 "If the learning rate is too high, the data may look like a ‘ball’ with any point approximately equidistant from its nearest neighbours. If the learning rate is too low, most points may look compressed in a dense cloud with few outliers." Recommended: learning_rate(10-1000)
12
+ :return: [tuple] - the output is the x and y coordinates for the reduced latent space, a title, and a TSNE embedding
 
 
 
 
 
13
  """
14
  model = TSNE(n_components=2, random_state=0, perplexity=perplexity,
15
  learning_rate=learning_rate)
 
26
 
27
 
28
  def plot_dimensionality_reduction(x: list, y: list, label_set: list, title: str):
29
+ """
30
+ :param x: [list] - the first set of coordinates for each latent point
31
+ :param y: [list] - the second set of coordinates for each latent point
32
+ :param label_set: [list] - a set of values that define the color of each point based on an additional quantitative attribute.
33
+ :return: matplotlib figure - the output is a matplotlib figure that displays all the points in a 2-dimensional latent space, based on the labels provided.
34
+ """
35
  plt.title(title)
36
+ # Color points based on a continuous label
37
  if label_set[0].dtype == float:
38
  plt.scatter(x, y, c=label_set)
39
  cbar = plt.colorbar()
app.py CHANGED
@@ -89,9 +89,7 @@ if st.button('Generate Dataset'): # Generate the dataset
89
  plt.figure(3)
90
  # set the color values for the plot
91
  plot_dimensionality_reduction(x, y, avg_density, title)
92
-
93
- # plt.scatter(x, y)
94
- plt.title(title)
95
  plt.figure(3)
96
  st.pyplot(plt.figure(3))
97
 
 
89
  plt.figure(3)
90
  # set the color values for the plot
91
  plot_dimensionality_reduction(x, y, avg_density, title)
92
+ # plt.title(title)
 
 
93
  plt.figure(3)
94
  st.pyplot(plt.figure(3))
95