import numpy as np | |
from Data_Generation.Shape_Generation_Functions import basic_box, diagonal_box_split, horizontal_vertical_box_split, \ | |
back_slash_box, forward_slash_box, back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, \ | |
x_hamburger_box, x_hot_dog_box, x_plus_box | |
import matplotlib.pyplot as plt | |
from Data_Generation.Piecewise_Box_Functions import add_pixels | |
######################################################################################################################## | |
# Make the data using all the code in Shape_Generation_Functions.py | |
def make_boxes(image_size, densities, shapes): | |
""" | |
:param image_size: [int] - the pixel height and width of the generated arrays | |
:param densities: [list] - of the values of each of the active pixels in each shape | |
:param shapes: [list] - of the various shapes desired for the dataset | |
:return: [list[tuple]] - [Array, Density, Thickness, Shape] | |
""" | |
# matrix = [] | |
# | |
# for function in shapes: # Adds different types of shapes | |
# | |
# # Adds different density values | |
# for i in range(len(densities)): | |
# # Loops through the possible thickness values | |
# for j in range(image_size): # Adds additional Pixels | |
# thickness = j | |
# Array = (function(thickness, densities[i], image_size)) | |
# | |
# # Checks if there are any 0's left in the array to append | |
# if (np.where((Array == float(0)))[0] > 0).any(): | |
# the_tuple = (Array, str(function.__name__), densities[i], thickness) | |
# matrix.append(the_tuple) | |
# | |
# # Prevents solids shapes from being appended to the array | |
# else: | |
# break | |
matrix = [] | |
base_shapes = [] | |
density_1 = [] | |
for function in shapes: # Create an array of the base shapes | |
thickness = 0 | |
Array = function(thickness, 1, image_size) | |
# density_1_tuple = np.array([Array, str(function.__name__), 1, thickness]) # Array, Shape, Density, Thickness | |
# base_shapes.append(density_1_tuple) | |
density_1 = np.append(density_1,(np.array([Array, str(function.__name__), 1, thickness])), axis=1) # Array, Shape, Density, Thickness | |
# Add one to the thickness of the previous array | |
# for j in range(image_size): | |
while (np.where((Array == float(0)))[0] > 0).any(): | |
# Checks if there are any 0's left in the array to append | |
# if (np.where((Array == float(0)))[0] > 0).any(): | |
# density_1.append(density_1_tuple, axis=0) | |
thickness += 1 | |
if np.shape(density_1) == (4,): | |
Array = add_pixels(density_1[0], 1) # will add 1 pixel to each previous array, rather than adding multiple and having to loop | |
else: | |
print(np.shape(density_1)) | |
print(density_1[-1][0]) | |
Array = add_pixels(density_1[-1][0], 1) | |
# print(np.shape(Array)) | |
density_1_tuple = np.array([Array, str(function.__name__), 1, thickness]) | |
# else: # Prevents solids shapes from being appended to the array | |
# break | |
density_1 = np.vstack((density_1, density_1_tuple)) | |
matrix = [] | |
# print(np.shape(density_1[0])) | |
# print(density_1[:][0]) | |
for i in range(len(densities)): | |
some = np.multiply(density_1[:][0],densities[i]) #,density_1[:1]) | |
# print(np.shape(some)) | |
matrix.append(tuple(some)) | |
# # Adds different density values | |
# for i in range(len(densities)): | |
# # Loops through the possible thickness values | |
# for j in range(image_size): # Adds additional Pixels | |
# thickness = j | |
# Array = (function(thickness, densities[i], image_size)) | |
# | |
# # Checks if there are any 0's left in the array to append | |
# if (np.where((Array == float(0)))[0] > 0).any(): | |
# the_tuple = (Array, str(function.__name__), densities[i], thickness) | |
# matrix.append(the_tuple) | |
# | |
# # Prevents solids shapes from being appended to the array | |
# else: | |
# break | |
return matrix | |
######################################################################################################################## | |
# Testing | |
image_size = 9 | |
densities = [1] | |
shapes = [basic_box, diagonal_box_split, horizontal_vertical_box_split, back_slash_box, forward_slash_box, | |
back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, x_hamburger_box, | |
x_hot_dog_box, x_plus_box] | |
boxes = make_boxes(image_size, densities, shapes) | |
# print(np.shape(boxes)) | |
desired_label = 'basic_box' | |
desired_density = 1 | |
desired_thickness = 0 | |
box_arrays, box_shape, box_density, box_thickness, = list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3] | |
# print(np.shape(box_arrays)) | |
# print(np.shape(box_shape)) | |
# print(np.shape(box_density)) | |
indices = [i for i in range(len(box_arrays)) if box_shape[i] == desired_label and box_density[i] == desired_density and box_thickness[i] == desired_thickness] | |
plt.imshow(box_arrays[indices[0]]) | |
plt.show() | |