# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" import evaluate import datasets from collections import Counter import numpy as np # TODO: Add BibTeX citation _CITATION = """\ @InProceedings{huggingface:module, title = {A great new module}, authors={huggingface, Inc.}, year={2020} } """ # TODO: Add description of the module here _DESCRIPTION = """\ This module calculates the unigram precision, recall, and f1 score. """ # TODO: Add description of the arguments of the module here _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of list of int (token) references: list of list of int (tokens) Returns: f1: the unigram f1 score. precision: the unigram accuracy. recall: the unigram recall. Examples: >>> my_new_module = evaluate.load("ckb/unigram") >>> results = my_new_module.compute(references=[[0, 1]], predictions=[[0, 1]]) >>> print(results) {'accuracy': 1.0} """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class unigram(evaluate.Metric): """TODO: Short description of my evaluation module.""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features({ 'predictions': datasets.Sequence(datasets.Value('int64')), 'references': datasets.Sequence(datasets.Value('int64')), }), # Homepage of the module for documentation homepage="http://module.homepage", # Additional links to the codebase or references codebase_urls=["http://github.com/path/to/codebase/of/new_module"], reference_urls=["http://path.to.reference.url/new_module"] ) def _prec_recall_f1_score(pred_items, gold_items): """ Compute precision, recall and f1 given a set of gold and prediction items. :param pred_items: iterable of predicted values :param gold_items: iterable of gold values :return: tuple (p, r, f1) for precision, recall, f1 """ common = Counter(gold_items) & Counter(pred_items) num_same = sum(common.values()) if num_same == 0: return 0, 0, 0 precision = 1.0 * num_same / len(pred_items) recall = 1.0 * num_same / len(gold_items) f1 = (2 * precision * recall) / (precision + recall) return np.array(precision, recall, f1) def _compute(self, predictions, references): """Returns the scores""" # TODO: Compute the different scores of the module score = sum(self._prec_recall_f1_score(i,j) for i, j in zip(predictions, references)) / len(predictions) return { "precision": score[0], "recall": score[1], "f1": score[2], }