import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline from deep_translator import GoogleTranslator import torch import string def preprocess_data(text: str) -> str: return text.lower().translate(str.maketrans("", "", string.punctuation)).strip() SARCASTIC_MODEL_PATH = "helinivan/english-sarcasm-detector" SENTIMENT_MODEL_PATH = "lxyuan/distilbert-base-multilingual-cased-sentiments-student" sarcasm_tokenizer = AutoTokenizer.from_pretrained(SARCASTIC_MODEL_PATH) sarcasm_model = AutoModelForSequenceClassification.from_pretrained(SARCASTIC_MODEL_PATH) sentiment_analyzer = pipeline("text-classification", model=SENTIMENT_MODEL_PATH, return_all_scores=True) def analyze_text(user_input): translated_text = GoogleTranslator(source="auto", target="en").translate(user_input) preprocessed_text = preprocess_data(translated_text) tokenized_text = sarcasm_tokenizer([preprocessed_text], padding=True, truncation=True, max_length=256, return_tensors="pt") with torch.no_grad(): output = sarcasm_model(**tokenized_text) probs = torch.nn.functional.softmax(output.logits, dim=-1).tolist()[0] sarcasm_confidence = max(probs) is_sarcastic = probs.index(sarcasm_confidence) if is_sarcastic: return f"Sarcastic" else: sentiment_scores = sentiment_analyzer(translated_text)[0] sentiment_result = max(sentiment_scores, key=lambda x: x["score"]) return f"{sentiment_result['label'].capitalize()}" iface = gr.Interface( fn=analyze_text, inputs=gr.Textbox(label="Enter your text (Tamil)"), outputs=gr.Textbox(label="Analysis Result"), description="Enter text in TAMIL", examples=[ ['ஹாய் மாலினி, நான் இதை சொல்லியே ஆகணும், நீ அவ்ளோ அழகு, இங்க உன்னைவிட ஒரு அழகா யாரும் பாத்துருக்க மாட்டாங்க'], ['இது நல்ல இல்ல'], ['நம்ம ஜெயிச்சிட்டோம் மாறா! '] ], ) iface.launch(share=True)