import os import torch import gradio as gr import torchvision import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # This is just to show an interface where one draws a number and gets prediction. n_epochs = 10 batch_size_train = 128 batch_size_test = 1000 learning_rate = 0.01 momentum = 0.5 log_interval = 10 random_seed = 1 TRAIN_CUTOFF = 10 MODEL_PATH = 'weights' os.makedirs(MODEL_PATH,exist_ok=True) METRIC_PATH = os.path.join(MODEL_PATH,'metrics.json') MODEL_WEIGHTS_PATH = os.path.join(MODEL_PATH,'mnist_model.pth') OPTIMIZER_PATH = os.path.join(MODEL_PATH,'optimizer.pth') REPOSITORY_DIR = "data" LOCAL_DIR = 'data_local' HF_TOKEN = os.getenv("HF_TOKEN") MODEL_REPO = 'mnist-adversarial-model' HF_DATASET ="mnist-adversarial-dataset" DATASET_REPO_URL = f"https://huggingface.co/datasets/chrisjay/{HF_DATASET}" MODEL_REPO_URL = f"https://huggingface.co/model/chrisjay/{MODEL_REPO}" torch.backends.cudnn.enabled = False torch.manual_seed(random_seed) TRAIN_TRANSFORM = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ]) # Source: https://nextjournal.com/gkoehler/pytorch-mnist class MNIST_Model(nn.Module): def __init__(self): super(MNIST_Model, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x) train_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('files/', train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( mean=(0.1307,), std=(0.3081,)) ])), batch_size=batch_size_train, shuffle=True) test_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('files/', train=False, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])), batch_size=batch_size_test, shuffle=True) def train(epoch,network,optimizer,train_loader): train_losses=[] network.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = network(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) train_losses.append(loss.item()) torch.save(network.state_dict(), MODEL_WEIGHTS_PATH) torch.save(optimizer.state_dict(), OPTIMIZER_PATH) def test(): test_losses=[] network.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = network(data) test_loss += F.nll_loss(output, target, size_average=False).item() pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).sum() test_loss /= len(test_loader.dataset) test_losses.append(test_loss) acc = 100. * correct / len(test_loader.dataset) acc = acc.item() test_metric = 'ă€½Current test metric -> Avg. loss: `{:.4f}`, Accuracy: `{:.0f}%`\n'.format( test_loss,acc) print(test_metric) return test_metric,acc random_seed = 1 torch.backends.cudnn.enabled = False torch.manual_seed(random_seed) network = MNIST_Model() #Initialize the model with random weights optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum) model_state_dict = MODEL_WEIGHTS_PATH optimizer_state_dict = OPTIMIZER_PATH if os.path.exists(model_state_dict) and os.path.exists(optimizer_state_dict): network_state_dict = torch.load(model_state_dict) network.load_state_dict(network_state_dict) optimizer_state_dict = torch.load(optimizer_state_dict) optimizer.load_state_dict(optimizer_state_dict) # Train #for epoch in range(n_epochs): # train(epoch,network,optimizer,train_loader) # test() def image_classifier(inp): """ It takes an image as input and returns a dictionary of class labels and their corresponding confidence scores. :param inp: the image to be classified :return: A dictionary of the class index and the confidence value. """ input_image = torchvision.transforms.ToTensor()(inp).unsqueeze(0) with torch.no_grad(): prediction = torch.nn.functional.softmax(network(input_image)[0], dim=0) #pred_number = prediction.data.max(1, keepdim=True)[1] sorted_prediction = torch.sort(prediction,descending=True) confidences={} for s,v in zip(sorted_prediction.indices.numpy().tolist(),sorted_prediction.values.numpy().tolist()): confidences.update({s:v}) return confidences def main(): block = gr.Blocks() with block: with gr.Row(): image_input =gr.inputs.Image(source="canvas",shape=(28,28),invert_colors=True,image_mode="L",type="pil") label_output = gr.outputs.Label(num_top_classes=10) image_input.change(image_classifier,inputs = [image_input],outputs=[label_output]) block.launch() if __name__ == "__main__": main()