import os import torch import gradio as gr import torchvision import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # This is just to show an interface where one draws a number and gets prediction. n_epochs = 10 batch_size_train = 128 batch_size_test = 1000 learning_rate = 0.01 momentum = 0.5 log_interval = 10 random_seed = 1 TRAIN_CUTOFF = 10 MODEL_PATH = 'model' METRIC_PATH = os.path.join(MODEL_PATH,'metrics.json') MODEL_WEIGHTS_PATH = os.path.join(MODEL_PATH,'mnist_model.pth') OPTIMIZER_PATH = os.path.join(MODEL_PATH,'optimizer.pth') REPOSITORY_DIR = "data" LOCAL_DIR = 'data_local' HF_TOKEN = os.getenv("HF_TOKEN") MODEL_REPO = 'mnist-adversarial-model' HF_DATASET ="mnist-adversarial-dataset" DATASET_REPO_URL = f"https://huggingface.co/datasets/chrisjay/{HF_DATASET}" MODEL_REPO_URL = f"https://huggingface.co/model/chrisjay/{MODEL_REPO}" torch.backends.cudnn.enabled = False torch.manual_seed(random_seed) TRAIN_TRANSFORM = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ]) # Source: https://nextjournal.com/gkoehler/pytorch-mnist class MNIST_Model(nn.Module): def __init__(self): super(MNIST_Model, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x) random_seed = 1 torch.backends.cudnn.enabled = False torch.manual_seed(random_seed) network = MNIST_Model() #Initialize the model with random weights optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum) # Train #train(n_epochs,network,optimizer) def image_classifier(inp): """ It takes an image as input and returns a dictionary of class labels and their corresponding confidence scores. :param inp: the image to be classified :return: A dictionary of the class index and the confidence value. """ input_image = torchvision.transforms.ToTensor()(inp).unsqueeze(0) with torch.no_grad(): prediction = torch.nn.functional.softmax(network(input_image)[0], dim=0) #pred_number = prediction.data.max(1, keepdim=True)[1] sorted_prediction = torch.sort(prediction,descending=True) confidences={} for s,v in zip(sorted_prediction.indices.numpy().tolist(),sorted_prediction.values.numpy().tolist()): confidences.update({s:v}) return confidences def main(): block = gr.Blocks() with block: with gr.Row(): image_input =gr.inputs.Image(source="canvas",shape=(28,28),invert_colors=True,image_mode="L",type="pil") label_output = gr.outputs.Label(num_top_classes=2) image_input.change(image_classifier,inputs = [image_input],outputs=[label_output]) block.launch() if __name__ == "__main__": main()