Spaces:
Runtime error
Runtime error
added train files and code 2
Browse files- .files/MNIST/raw/t10k-images-idx3-ubyte +3 -0
- .files/MNIST/raw/t10k-images-idx3-ubyte.gz +3 -0
- .files/MNIST/raw/t10k-labels-idx1-ubyte +3 -0
- .files/MNIST/raw/t10k-labels-idx1-ubyte.gz +3 -0
- .files/MNIST/raw/train-images-idx3-ubyte +3 -0
- .files/MNIST/raw/train-images-idx3-ubyte.gz +3 -0
- .files/MNIST/raw/train-labels-idx1-ubyte +3 -0
- .files/MNIST/raw/train-labels-idx1-ubyte.gz +3 -0
- .gitattributes +1 -0
- app.py +69 -3
.files/MNIST/raw/t10k-images-idx3-ubyte
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fa7898d509279e482958e8ce81c8e77db3f2f8254e26661ceb7762c4d494ce7
|
3 |
+
size 7840016
|
.files/MNIST/raw/t10k-images-idx3-ubyte.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d422c7b0a1c1c79245a5bcf07fe86e33eeafee792b84584aec276f5a2dbc4e6
|
3 |
+
size 1648877
|
.files/MNIST/raw/t10k-labels-idx1-ubyte
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff7bcfd416de33731a308c3f266cc351222c34898ecbeaf847f06e48f7ec33f2
|
3 |
+
size 10008
|
.files/MNIST/raw/t10k-labels-idx1-ubyte.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7ae60f92e00ec6debd23a6088c31dbd2371eca3ffa0defaefb259924204aec6
|
3 |
+
size 4542
|
.files/MNIST/raw/train-images-idx3-ubyte
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba891046e6505d7aadcbbe25680a0738ad16aec93bde7f9b65e87a2fc25776db
|
3 |
+
size 47040016
|
.files/MNIST/raw/train-images-idx3-ubyte.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:440fcabf73cc546fa21475e81ea370265605f56be210a4024d2ca8f203523609
|
3 |
+
size 9912422
|
.files/MNIST/raw/train-labels-idx1-ubyte
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65a50cbbf4e906d70832878ad85ccda5333a97f0f4c3dd2ef09a8a9eef7101c5
|
3 |
+
size 60008
|
.files/MNIST/raw/train-labels-idx1-ubyte.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3552534a0a558bbed6aed32b30c495cca23d567ec52cac8be1a0730e8010255c
|
3 |
+
size 28881
|
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*ubyte filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -8,7 +8,7 @@ import torch.optim as optim
|
|
8 |
|
9 |
# This is just to show an interface where one draws a number and gets prediction.
|
10 |
|
11 |
-
n_epochs =
|
12 |
batch_size_train = 128
|
13 |
batch_size_test = 1000
|
14 |
learning_rate = 0.01
|
@@ -16,7 +16,8 @@ momentum = 0.5
|
|
16 |
log_interval = 10
|
17 |
random_seed = 1
|
18 |
TRAIN_CUTOFF = 10
|
19 |
-
MODEL_PATH = '
|
|
|
20 |
METRIC_PATH = os.path.join(MODEL_PATH,'metrics.json')
|
21 |
MODEL_WEIGHTS_PATH = os.path.join(MODEL_PATH,'mnist_model.pth')
|
22 |
OPTIMIZER_PATH = os.path.join(MODEL_PATH,'optimizer.pth')
|
@@ -65,6 +66,62 @@ class MNIST_Model(nn.Module):
|
|
65 |
x = self.fc2(x)
|
66 |
return F.log_softmax(x)
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
|
70 |
|
@@ -77,8 +134,17 @@ optimizer = optim.SGD(network.parameters(), lr=learning_rate,
|
|
77 |
momentum=momentum)
|
78 |
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
# Train
|
81 |
-
|
|
|
82 |
|
83 |
|
84 |
def image_classifier(inp):
|
|
|
8 |
|
9 |
# This is just to show an interface where one draws a number and gets prediction.
|
10 |
|
11 |
+
n_epochs = 100
|
12 |
batch_size_train = 128
|
13 |
batch_size_test = 1000
|
14 |
learning_rate = 0.01
|
|
|
16 |
log_interval = 10
|
17 |
random_seed = 1
|
18 |
TRAIN_CUTOFF = 10
|
19 |
+
MODEL_PATH = 'weights'
|
20 |
+
os.makedirs(MODEL_PATH,exist_ok=True)
|
21 |
METRIC_PATH = os.path.join(MODEL_PATH,'metrics.json')
|
22 |
MODEL_WEIGHTS_PATH = os.path.join(MODEL_PATH,'mnist_model.pth')
|
23 |
OPTIMIZER_PATH = os.path.join(MODEL_PATH,'optimizer.pth')
|
|
|
66 |
x = self.fc2(x)
|
67 |
return F.log_softmax(x)
|
68 |
|
69 |
+
train_loader = torch.utils.data.DataLoader(
|
70 |
+
torchvision.datasets.MNIST('.files/', train=True, download=True,
|
71 |
+
transform=torchvision.transforms.Compose([
|
72 |
+
torchvision.transforms.ToTensor(),
|
73 |
+
torchvision.transforms.Normalize(
|
74 |
+
(0.1307,), (0.3081,))
|
75 |
+
])),
|
76 |
+
batch_size=batch_size_train, shuffle=True)
|
77 |
+
|
78 |
+
test_loader = torch.utils.data.DataLoader(
|
79 |
+
torchvision.datasets.MNIST('.files/', train=False, download=True,
|
80 |
+
transform=torchvision.transforms.Compose([
|
81 |
+
torchvision.transforms.ToTensor(),
|
82 |
+
torchvision.transforms.Normalize(
|
83 |
+
(0.1307,), (0.3081,))
|
84 |
+
])),
|
85 |
+
batch_size=batch_size_test, shuffle=True)
|
86 |
+
|
87 |
+
def train(epochs,network,optimizer,train_loader):
|
88 |
+
|
89 |
+
train_losses=[]
|
90 |
+
network.train()
|
91 |
+
for epoch in range(epochs):
|
92 |
+
for batch_idx, (data, target) in enumerate(train_loader):
|
93 |
+
optimizer.zero_grad()
|
94 |
+
output = network(data)
|
95 |
+
loss = F.nll_loss(output, target)
|
96 |
+
loss.backward()
|
97 |
+
optimizer.step()
|
98 |
+
if batch_idx % log_interval == 0:
|
99 |
+
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
|
100 |
+
epoch, batch_idx * len(data), len(train_loader.dataset),
|
101 |
+
100. * batch_idx / len(train_loader), loss.item()))
|
102 |
+
train_losses.append(loss.item())
|
103 |
+
|
104 |
+
torch.save(network.state_dict(), MODEL_WEIGHTS_PATH)
|
105 |
+
torch.save(optimizer.state_dict(), OPTIMIZER_PATH)
|
106 |
+
|
107 |
+
def test():
|
108 |
+
test_losses=[]
|
109 |
+
network.eval()
|
110 |
+
test_loss = 0
|
111 |
+
correct = 0
|
112 |
+
with torch.no_grad():
|
113 |
+
for data, target in test_loader:
|
114 |
+
output = network(data)
|
115 |
+
test_loss += F.nll_loss(output, target, size_average=False).item()
|
116 |
+
pred = output.data.max(1, keepdim=True)[1]
|
117 |
+
correct += pred.eq(target.data.view_as(pred)).sum()
|
118 |
+
test_loss /= len(test_loader.dataset)
|
119 |
+
test_losses.append(test_loss)
|
120 |
+
acc = 100. * correct / len(test_loader.dataset)
|
121 |
+
acc = acc.item()
|
122 |
+
test_metric = '〽Current test metric -> Avg. loss: `{:.4f}`, Accuracy: `{:.0f}%`\n'.format(
|
123 |
+
test_loss,acc)
|
124 |
+
return test_metric,acc
|
125 |
|
126 |
|
127 |
|
|
|
134 |
momentum=momentum)
|
135 |
|
136 |
|
137 |
+
model_state_dict = MODEL_WEIGHTS_PATH
|
138 |
+
optimizer_state_dict = OPTIMIZER_PATH
|
139 |
+
if os.path.exists(model_state_dict) and os.path.exists(optimizer_state_dict):
|
140 |
+
network_state_dict = torch.load(model_state_dict)
|
141 |
+
network.load_state_dict(network_state_dict)
|
142 |
+
|
143 |
+
optimizer_state_dict = torch.load(optimizer_state_dict)
|
144 |
+
optimizer.load_state_dict(optimizer_state_dict)
|
145 |
# Train
|
146 |
+
train(n_epochs,network,optimizer,train_loader)
|
147 |
+
test()
|
148 |
|
149 |
|
150 |
def image_classifier(inp):
|