#!/usr/bin/env python from __future__ import annotations import os import gradio as gr from inference_fatezero import merge_config_then_run # TITLE = '# [FateZero](http://fate-zero-edit.github.io/)' HF_TOKEN = os.getenv('HF_TOKEN') # pipe = InferencePipeline(HF_TOKEN) pipe = merge_config_then_run() # app = InferenceUtil(HF_TOKEN) with gr.Blocks(css='style.css') as demo: # gr.Markdown(TITLE) gr.HTML( """
We provide an Editing Guidance to help users to choose hyperparameters when editing in-the-wild video.
Note that due to the limits of memory and computing resources on hugging-face, the results here are only toy examples and take longer to edit.
You may duplicate the space and upgrade to GPU in settings for better performance and faster inference without waiting in the queue.
Alternatively, try our GitHub code on your GPU.
""") with gr.Row(): with gr.Column(): with gr.Accordion('Input Video', open=True): # user_input_video = gr.File(label='Input Source Video') user_input_video = gr.Video(label='Input Source Video', source='upload', type='numpy', format="mp4", visible=True).style(height="auto") with gr.Accordion('Temporal Crop offset and Sampling Stride', open=False): n_sample_frame = gr.Slider(label='Number of Frames', minimum=0, maximum=32, step=1, value=8) stride = gr.Slider(label='Temporal stride', minimum=0, maximum=20, step=1, value=1) start_sample_frame = gr.Number(label='Start frame in the video', value=0, precision=0) with gr.Accordion('Spatial Crop offset', open=False): left_crop = gr.Number(label='Left crop', value=0, precision=0) right_crop = gr.Number(label='Right crop', value=0, precision=0) top_crop = gr.Number(label='Top crop', value=0, precision=0) bottom_crop = gr.Number(label='Bottom crop', value=0, precision=0) offset_list = [ left_crop, right_crop, top_crop, bottom_crop, ] ImageSequenceDataset_list = [ start_sample_frame, n_sample_frame, stride ] + offset_list model_id = gr.Dropdown( label='Model ID', choices=[ 'CompVis/stable-diffusion-v1-4', # add shape editing ckpt here ], value='CompVis/stable-diffusion-v1-4') with gr.Accordion('Text Prompt', open=True): source_prompt = gr.Textbox(label='Source Prompt', info='A good prompt describes each frame and most objects in video. Especially, it has the object or attribute that we want to edit or preserve.', max_lines=1, placeholder='Example: "a silver jeep driving down a curvy road in the countryside"', value='a silver jeep driving down a curvy road in the countryside') target_prompt = gr.Textbox(label='Target Prompt', info='A reasonable composition of video may achieve better results(e.g., "sunflower" video with "Van Gogh" prompt is better than "sunflower" with "Monet")', max_lines=1, placeholder='Example: "watercolor painting of a silver jeep driving down a curvy road in the countryside"', value='watercolor painting of a silver jeep driving down a curvy road in the countryside') run_button = gr.Button('Generate') with gr.Column(): result = gr.Video(label='Result') # result.style(height=512, width=512) with gr.Accordion('FateZero Parameters for attention fusing', open=True): cross_replace_steps = gr.Slider(label='Cross-att replace steps', info='More steps, replace more cross attention to preserve semantic layout.', minimum=0.0, maximum=1.0, step=0.1, value=0.7) self_replace_steps = gr.Slider(label='Self-att replace steps', info='More steps, replace more spatial-temporal self-attention to preserve geometry and motion.', minimum=0.0, maximum=1.0, step=0.1, value=0.7) enhance_words = gr.Textbox(label='Enhanced words', info='Amplify the target-words cross attention', max_lines=1, placeholder='Example: "watercolor "', value='watercolor') enhance_words_value = gr.Slider(label='Target cross-att amplification', info='larger value, more elements of target words', minimum=0.0, maximum=20.0, step=1, value=10) with gr.Accordion('DDIM Parameters', open=True): num_steps = gr.Slider(label='Number of Steps', info='larger value has better editing capacity, but takes more time and memory. (50 steps may produces memory errors)', minimum=0, maximum=30, step=1, value=15) guidance_scale = gr.Slider(label='CFG Scale', minimum=0, maximum=50, step=0.1, value=7.5) with gr.Row(): from example import style_example examples = style_example gr.Examples(examples=examples, inputs=[ model_id, user_input_video, source_prompt, target_prompt, cross_replace_steps, self_replace_steps, enhance_words, enhance_words_value, num_steps, guidance_scale, user_input_video, *ImageSequenceDataset_list ], outputs=result, fn=pipe.run, cache_examples=True, # cache_examples=os.getenv('SYSTEM') == 'spaces' ) inputs = [ model_id, user_input_video, source_prompt, target_prompt, cross_replace_steps, self_replace_steps, enhance_words, enhance_words_value, num_steps, guidance_scale, user_input_video, *ImageSequenceDataset_list ] target_prompt.submit(fn=pipe.run, inputs=inputs, outputs=result) run_button.click(fn=pipe.run, inputs=inputs, outputs=result) demo.queue().launch()