chenjgtea commited on
Commit
fc0d94d
·
1 Parent(s): a536c15

dvae_sc 代码移植

Browse files
Chat2TTS/model/__init__.py ADDED
File without changes
Chat2TTS/model/dvae_sc.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional, Literal, Tuple
3
+
4
+ import numpy as np
5
+ import pybase16384 as b14
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+ import torchaudio
10
+ from vector_quantize_pytorch import GroupedResidualFSQ
11
+
12
+
13
+ class ConvNeXtBlock(nn.Module):
14
+ def __init__(
15
+ self,
16
+ dim: int,
17
+ intermediate_dim: int,
18
+ kernel: int,
19
+ dilation: int,
20
+ layer_scale_init_value: float = 1e-6,
21
+ ):
22
+ # ConvNeXt Block copied from Vocos.
23
+ super().__init__()
24
+ self.dwconv = nn.Conv1d(
25
+ dim,
26
+ dim,
27
+ kernel_size=kernel,
28
+ padding=dilation * (kernel // 2),
29
+ dilation=dilation,
30
+ groups=dim,
31
+ ) # depthwise conv
32
+
33
+ self.norm = nn.LayerNorm(dim, eps=1e-6)
34
+ self.pwconv1 = nn.Linear(
35
+ dim, intermediate_dim
36
+ ) # pointwise/1x1 convs, implemented with linear layers
37
+ self.act = nn.GELU()
38
+ self.pwconv2 = nn.Linear(intermediate_dim, dim)
39
+ self.gamma = (
40
+ nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
41
+ if layer_scale_init_value > 0
42
+ else None
43
+ )
44
+
45
+ def forward(self, x: torch.Tensor, cond=None) -> torch.Tensor:
46
+ residual = x
47
+
48
+ y = self.dwconv(x)
49
+ y.transpose_(1, 2) # (B, C, T) -> (B, T, C)
50
+ x = self.norm(y)
51
+ del y
52
+ y = self.pwconv1(x)
53
+ del x
54
+ x = self.act(y)
55
+ del y
56
+ y = self.pwconv2(x)
57
+ del x
58
+ if self.gamma is not None:
59
+ y *= self.gamma
60
+ y.transpose_(1, 2) # (B, T, C) -> (B, C, T)
61
+
62
+ x = y + residual
63
+ del y
64
+
65
+ return x
66
+
67
+
68
+ class GFSQ(nn.Module):
69
+
70
+ def __init__(
71
+ self, dim: int, levels: List[int], G: int, R: int, eps=1e-5, transpose=True
72
+ ):
73
+ super(GFSQ, self).__init__()
74
+ self.quantizer = GroupedResidualFSQ(
75
+ dim=dim,
76
+ levels=list(levels),
77
+ num_quantizers=R,
78
+ groups=G,
79
+ )
80
+ self.n_ind = math.prod(levels)
81
+ self.eps = eps
82
+ self.transpose = transpose
83
+ self.G = G
84
+ self.R = R
85
+
86
+ def _embed(self, x: torch.Tensor):
87
+ if self.transpose:
88
+ x = x.transpose(1, 2)
89
+ """
90
+ x = rearrange(
91
+ x, "b t (g r) -> g b t r", g = self.G, r = self.R,
92
+ )
93
+ """
94
+ x = x.view(x.size(0), x.size(1), self.G, self.R).permute(2, 0, 1, 3)
95
+ feat = self.quantizer.get_output_from_indices(x)
96
+ return feat.transpose_(1, 2) if self.transpose else feat
97
+
98
+ def __call__(self, x: torch.Tensor) -> torch.Tensor:
99
+ return super().__call__(x)
100
+
101
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
102
+ if self.transpose:
103
+ x.transpose_(1, 2)
104
+ # feat, ind = self.quantizer(x)
105
+ _, ind = self.quantizer(x)
106
+ """
107
+ ind = rearrange(
108
+ ind, "g b t r ->b t (g r)",
109
+ )
110
+ """
111
+ ind = ind.permute(1, 2, 0, 3).contiguous()
112
+ ind = ind.view(ind.size(0), ind.size(1), -1)
113
+ """
114
+ embed_onehot_tmp = F.one_hot(ind.long(), self.n_ind)
115
+ embed_onehot = embed_onehot_tmp.to(x.dtype)
116
+ del embed_onehot_tmp
117
+ e_mean = torch.mean(embed_onehot, dim=[0, 1])
118
+ # e_mean = e_mean / (e_mean.sum(dim=1) + self.eps).unsqueeze(1)
119
+ torch.div(e_mean, (e_mean.sum(dim=1) + self.eps).unsqueeze(1), out=e_mean)
120
+ perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + self.eps), dim=1))
121
+
122
+ return
123
+ torch.zeros(perplexity.shape, dtype=x.dtype, device=x.device),
124
+ feat.transpose_(1, 2) if self.transpose else feat,
125
+ perplexity,
126
+ """
127
+ return ind.transpose_(1, 2) if self.transpose else ind
128
+
129
+
130
+ class DVAEDecoder(nn.Module):
131
+ def __init__(
132
+ self,
133
+ idim: int,
134
+ odim: int,
135
+ n_layer=12,
136
+ bn_dim=64,
137
+ hidden=256,
138
+ kernel=7,
139
+ dilation=2,
140
+ up=False,
141
+ ):
142
+ super().__init__()
143
+ self.up = up
144
+ self.conv_in = nn.Sequential(
145
+ nn.Conv1d(idim, bn_dim, 3, 1, 1),
146
+ nn.GELU(),
147
+ nn.Conv1d(bn_dim, hidden, 3, 1, 1),
148
+ )
149
+ self.decoder_block = nn.ModuleList(
150
+ [
151
+ ConvNeXtBlock(
152
+ hidden,
153
+ hidden * 4,
154
+ kernel,
155
+ dilation,
156
+ )
157
+ for _ in range(n_layer)
158
+ ]
159
+ )
160
+ self.conv_out = nn.Conv1d(hidden, odim, kernel_size=1, bias=False)
161
+
162
+ def forward(self, x: torch.Tensor, conditioning=None) -> torch.Tensor:
163
+ # B, C, T
164
+ y = self.conv_in(x)
165
+ del x
166
+ for f in self.decoder_block:
167
+ y = f(y, conditioning)
168
+
169
+ x = self.conv_out(y)
170
+ del y
171
+ return x
172
+
173
+
174
+ class MelSpectrogramFeatures(torch.nn.Module):
175
+ def __init__(
176
+ self,
177
+ sample_rate=24000,
178
+ n_fft=1024,
179
+ hop_length=256,
180
+ n_mels=100,
181
+ padding: Literal["center", "same"] = "center",
182
+ ):
183
+ super().__init__()
184
+ if padding not in ["center", "same"]:
185
+ raise ValueError("Padding must be 'center' or 'same'.")
186
+ self.padding = padding
187
+ self.mel_spec = torchaudio.transforms.MelSpectrogram(
188
+ sample_rate=sample_rate,
189
+ n_fft=n_fft,
190
+ hop_length=hop_length,
191
+ n_mels=n_mels,
192
+ center=padding == "center",
193
+ power=1,
194
+ )
195
+
196
+ def __call__(self, audio: torch.Tensor) -> torch.Tensor:
197
+ return super().__call__(audio)
198
+
199
+ def forward(self, audio: torch.Tensor) -> torch.Tensor:
200
+ mel: torch.Tensor = self.mel_spec(audio)
201
+ features = torch.log(torch.clip(mel, min=1e-5))
202
+ return features
203
+
204
+
205
+ class DVAE(nn.Module):
206
+ def __init__(
207
+ self,
208
+ decoder_config: dict,
209
+ encoder_config: Optional[dict] = None,
210
+ vq_config: Optional[dict] = None,
211
+ dim=512,
212
+ coef: Optional[str] = None,
213
+ ):
214
+ super().__init__()
215
+ if coef is None:
216
+ coef = torch.rand(100)
217
+ else:
218
+ coef = torch.from_numpy(
219
+ np.copy(np.frombuffer(b14.decode_from_string(coef), dtype=np.float32))
220
+ )
221
+ self.register_buffer("coef", coef.unsqueeze(0).unsqueeze_(2))
222
+
223
+ if encoder_config is not None:
224
+ self.downsample_conv = nn.Sequential(
225
+ nn.Conv1d(100, dim, 3, 1, 1),
226
+ nn.GELU(),
227
+ nn.Conv1d(dim, dim, 4, 2, 1),
228
+ nn.GELU(),
229
+ )
230
+ self.preprocessor_mel = MelSpectrogramFeatures()
231
+ self.encoder: Optional[DVAEDecoder] = DVAEDecoder(**encoder_config)
232
+
233
+ self.decoder = DVAEDecoder(**decoder_config)
234
+ self.out_conv = nn.Conv1d(dim, 100, 3, 1, 1, bias=False)
235
+ if vq_config is not None:
236
+ self.vq_layer = GFSQ(**vq_config)
237
+ else:
238
+ self.vq_layer = None
239
+
240
+ def __repr__(self) -> str:
241
+ return b14.encode_to_string(
242
+ self.coef.cpu().numpy().astype(np.float32).tobytes()
243
+ )
244
+
245
+ def __call__(
246
+ self, inp: torch.Tensor, mode: Literal["encode", "decode"] = "decode"
247
+ ) -> torch.Tensor:
248
+ return super().__call__(inp, mode)
249
+
250
+ @torch.inference_mode()
251
+ def forward(
252
+ self, inp: torch.Tensor, mode: Literal["encode", "decode"] = "decode"
253
+ ) -> torch.Tensor:
254
+ if mode == "encode" and hasattr(self, "encoder") and self.vq_layer is not None:
255
+ mel = self.preprocessor_mel(inp)
256
+ x: torch.Tensor = self.downsample_conv(
257
+ torch.div(mel, self.coef.view(100, 1).expand(mel.shape), out=mel),
258
+ ).unsqueeze_(0)
259
+ del mel
260
+ x = self.encoder(x)
261
+ ind = self.vq_layer(x)
262
+ del x
263
+ return ind
264
+
265
+ if self.vq_layer is not None:
266
+ vq_feats = self.vq_layer._embed(inp)
267
+ else:
268
+ vq_feats = inp
269
+
270
+ vq_feats = (
271
+ vq_feats.view(
272
+ (vq_feats.size(0), 2, vq_feats.size(1) // 2, vq_feats.size(2)),
273
+ )
274
+ .permute(0, 2, 3, 1)
275
+ .flatten(2)
276
+ )
277
+
278
+ dec_out = self.out_conv(
279
+ self.decoder(
280
+ x=vq_feats,
281
+ ),
282
+ )
283
+
284
+ del vq_feats
285
+
286
+ return torch.mul(dec_out, self.coef, out=dec_out)