import torch from torch.utils import data import numpy as np from os.path import join as pjoin import random import codecs as cs from tqdm import tqdm class VQMotionDataset(data.Dataset): def __init__(self, dataset_name, feat_bias = 5, window_size = 64, unit_length = 8): self.window_size = window_size self.unit_length = unit_length self.feat_bias = feat_bias self.dataset_name = dataset_name min_motion_len = 40 if dataset_name =='t2m' else 24 if dataset_name == 't2m': self.data_root = './dataset/HumanML3D' self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') self.text_dir = pjoin(self.data_root, 'texts') self.joints_num = 22 radius = 4 fps = 20 self.max_motion_length = 196 dim_pose = 263 self.meta_dir = './checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' #kinematic_chain = paramUtil.t2m_kinematic_chain elif dataset_name == 'kit': self.data_root = './dataset/KIT-ML' self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') self.text_dir = pjoin(self.data_root, 'texts') self.joints_num = 21 radius = 240 * 8 fps = 12.5 dim_pose = 251 self.max_motion_length = 196 self.meta_dir = './checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' #kinematic_chain = paramUtil.kit_kinematic_chain joints_num = self.joints_num mean = np.load(pjoin(self.meta_dir, 'mean.npy')) std = np.load(pjoin(self.meta_dir, 'std.npy')) split_file = pjoin(self.data_root, 'train.txt') data_dict = {} id_list = [] with cs.open(split_file, 'r') as f: for line in f.readlines(): id_list.append(line.strip()) new_name_list = [] length_list = [] for name in tqdm(id_list): try: motion = np.load(pjoin(self.motion_dir, name + '.npy')) if (len(motion)) < min_motion_len or (len(motion) >= 200): continue data_dict[name] = {'motion': motion, 'length': len(motion), 'name': name} new_name_list.append(name) length_list.append(len(motion)) except: # Some motion may not exist in KIT dataset pass self.mean = mean self.std = std self.length_arr = np.array(length_list) self.data_dict = data_dict self.name_list = new_name_list def inv_transform(self, data): return data * self.std + self.mean def __len__(self): return len(self.data_dict) def __getitem__(self, item): name = self.name_list[item] data = self.data_dict[name] motion, m_length = data['motion'], data['length'] m_length = (m_length // self.unit_length) * self.unit_length idx = random.randint(0, len(motion) - m_length) motion = motion[idx:idx+m_length] "Z Normalization" motion = (motion - self.mean) / self.std return motion, name def DATALoader(dataset_name, batch_size = 4, num_workers = 8, unit_length = 4) : train_loader = torch.utils.data.DataLoader(VQMotionDataset(dataset_name, unit_length=unit_length), batch_size, shuffle=True, num_workers=num_workers, #collate_fn=collate_fn, drop_last = True) return train_loader from torch.utils.data.distributed import DistributedSampler # def DATALoader_ddp(dataset_name, # batch_size = 4, # num_workers = 8, unit_length = 4) : # dataset = VQMotionDataset(dataset_name, unit_length=unit_length) # train_sampler = DistributedSampler(dataset) # train_loader = torch.utils.data.DataLoader(dataset, # batch_size=batch_size, # shuffle=False, # num_workers=num_workers, # sampler=train_sampler) # return train_loader def cycle(iterable): while True: for x in iterable: yield x