import gradio as gr import pandas as pd import matplotlib.pyplot as plt from Prediction import * import os from datetime import datetime examples = [] if os.path.exists("assets/examples.txt"): with open("assets/examples.txt", "r", encoding="utf8") as file: for sentence in file: sentence = sentence.strip() examples.append(sentence) else: examples = [ "Games of the imagination teach us actions have consequences in a realm that can be reset.", "But New Jersey farmers are retiring and all over the state, development continues to push out dwindling farmland.", "He also is the Head Designer of The Design Trust so-to-speak, besides his regular job ..." ] device = torch.device('cpu') manager = model_factory("./models", device) def single_sentence(sentence): model_name = 'All_Data' dct = manager[model_name] model, tokenizer = dct['model'], dct['tokenizer'] predictions = predict_single(sentence, tokenizer, model, device) predictions.sort(reverse=True) return list(zip(LABEL_COLUMNS, predictions)) def csv_process(csv_file, attr="content"): current_time = datetime.now() formatted_time = current_time.strftime("%Y_%m_%d_%H_%M_%S") data = pd.read_csv(csv_file.name) data = data.reset_index() os.makedirs('output', exist_ok=True) outputs = [] model_name = 'All_Data' dct = manager[model_name] model, tokenizer = dct['model'], dct['tokenizer'] predictions = predict_csv(data, attr, tokenizer, model, device) output_path = f"output/prediction_{model_name}_{formatted_time}.csv" predictions.to_csv(output_path) outputs.append(output_path) return outputs my_theme = gr.Theme.from_hub("JohnSmith9982/small_and_pretty") with gr.Blocks(theme=my_theme, title='Murphy') as demo: gr.HTML( """
""") with gr.Tab("Single Sentence"): with gr.Row(): tbox_input = gr.Textbox(label="Input", info="Please input a sentence here:") gr.Markdown(""" # Detailed information about our model: ... """) tab_output = gr.DataFrame(label='Predictions:', headers=["Label", "Probability"], datatype=["str", "number"], interactive=False) with gr.Row(): button_ss = gr.Button("Submit", variant="primary") button_ss.click(fn=single_sentence, inputs=[tbox_input], outputs=[tab_output]) gr.ClearButton([tbox_input, tab_output]) gr.Examples( examples=examples, inputs=tbox_input, examples_per_page=len(examples) ) with gr.Tab("Csv File"): with gr.Row(): csv_input = gr.File(label="CSV File:", file_types=['.csv'], file_count="single" ) csv_output = gr.File(label="Predictions:") with gr.Row(): button = gr.Button("Submit", variant="primary") button.click(fn=csv_process, inputs=[csv_input], outputs=[csv_output]) gr.ClearButton([csv_input, csv_output]) gr.Markdown("## Examples \n The incoming CSV must include the ``content`` field, which represents the text that needs to be predicted!") gr.DataFrame(label='Csv input format:', value=[[i, examples[i]] for i in range(len(examples))], headers=["index", "content"], datatype=["number","str"], interactive=False ) with gr.Tab("Readme"): gr.Markdown( """ # Paper Name # Authors + First author + Corresponding author # Detailed Information ... """ ) demo.launch()