from llama_index.core import ( SimpleDirectoryReader, # VectorStoreIndex, StorageContext, Settings, get_response_synthesizer) from llama_index.core.query_engine import RetrieverQueryEngine, TransformQueryEngine from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import TextNode, MetadataMode from llama_index.core.retrievers import VectorIndexRetriever # from llama_index.core.indices.query.query_transform import HyDEQueryTransform from llama_index.core.response_synthesizers import ResponseMode # from transformers import AutoTokenizer from llama_index.core.vector_stores import VectorStoreQuery from llama_index.core.indices.vector_store.base import VectorStoreIndex from llama_index.vector_stores.qdrant import QdrantVectorStore from qdrant_client import QdrantClient import logging from llama_index.llms.llama_cpp import LlamaCPP from llama_index.embeddings.fastembed import FastEmbedEmbedding class ChatPDF: logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) query_engine = None # model_url = "https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat-GGUF/resolve/main/qwen1_5-1_8b-chat-q8_0.gguf" model_url = "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf/resolve/main/Phi-3-mini-4k-instruct-q4.gguf" # def messages_to_prompt(messages): # prompt = "" # for message in messages: # if message.role == 'system': # prompt += f"<|system|>\n{message.content}\n" # elif message.role == 'user': # prompt += f"<|user|>\n{message.content}\n" # elif message.role == 'assistant': # prompt += f"<|assistant|>\n{message.content}\n" # if not prompt.startswith("<|system|>\n"): # prompt = "<|system|>\n\n" + prompt # prompt = prompt + "<|assistant|>\n" # return prompt # def completion_to_prompt(completion): # return f"<|system|>\n\n<|user|>\n{completion}\n<|assistant|>\n" def __init__(self): self.text_parser = SentenceSplitter(chunk_size=512, chunk_overlap=20) self.logger.info("initializing the vector store related objects") # client = QdrantClient(host="localhost", port=6333) client = QdrantClient(":memory:") self.vector_store = QdrantVectorStore(client=client, collection_name="rag_documents", enable_hybrid=True) self.logger.info("initializing the FastEmbedEmbedding") self.embed_model = FastEmbedEmbedding(model_name="BAAI/bge-small-en") llm = LlamaCPP( model_url=self.model_url, temperature=0.1, max_new_tokens=256, context_window=3900, # generate_kwargs={}, # model_kwargs={"n_gpu_layers": -1}, messages_to_prompt=self.messages_to_prompt, completion_to_prompt=self.completion_to_prompt, verbose=True, ) # tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct") # tokenizer.save_pretrained("./models/tokenizer/") self.logger.info("initializing the global settings") Settings.text_splitter = self.text_parser Settings.embed_model = self.embed_model Settings.llm = llm # Settings.tokenzier = tokenizer Settings.transformations = [self.text_parser] def ingest(self, files_dir: str): text_chunks = [] doc_ids = [] nodes = [] docs = SimpleDirectoryReader(input_dir=files_dir).load_data() self.logger.info("enumerating docs") for doc_idx, doc in enumerate(docs): curr_text_chunks = self.text_parser.split_text(doc.text) text_chunks.extend(curr_text_chunks) doc_ids.extend([doc_idx] * len(curr_text_chunks)) self.logger.info("enumerating text_chunks") for idx, text_chunk in enumerate(text_chunks): node = TextNode(text=text_chunk) src_doc = docs[doc_ids[idx]] node.metadata = src_doc.metadata nodes.append(node) self.logger.info("enumerating nodes") for node in nodes: node_embedding = self.embed_model.get_text_embedding( node.get_content(metadata_mode=MetadataMode.ALL) ) node.embedding = node_embedding self.logger.info("initializing the storage context") storage_context = StorageContext.from_defaults(vector_store=self.vector_store) self.logger.info("indexing the nodes in VectorStoreIndex") index = VectorStoreIndex( nodes=nodes, storage_context=storage_context, transformations=Settings.transformations, ) self.logger.info("configure retriever") retriever = VectorIndexRetriever( index=index, similarity_top_k=6, vector_store_query_mode="hybrid" ) self.logger.info("configure response synthesizer") response_synthesizer = get_response_synthesizer( # streaming=True, response_mode=ResponseMode.COMPACT, ) self.logger.info("assemble query engine") self.query_engine = RetrieverQueryEngine( retriever=retriever, response_synthesizer=response_synthesizer, ) # self.logger.info("creating the HyDEQueryTransform instance") # hyde = HyDEQueryTransform(include_original=True) # self.hyde_query_engine = TransformQueryEngine(vector_query_engine, hyde) def ask(self, query: str): if not self.query_engine: return "Please, add a PDF document first." self.logger.info("retrieving the response to the query") response = self.query_engine.query(str_or_query_bundle=query) print(response) return response def clear(self): self.query_engine = None