from langchain_community.vectorstores import Chroma from langchain_community.llms import Ollama from langchain_community.embeddings import FastEmbedEmbeddings from langchain.schema.output_parser import StrOutputParser from langchain_community.document_loaders import PyMuPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.schema.runnable import RunnablePassthrough from langchain.prompts import PromptTemplate from langchain_community.vectorstores.utils import filter_complex_metadata class ChatPDF: vector_store = None retriever = None chain = None def __init__(self): self.model = Ollama( model="qwen:1.8b", keep_alive=-1, temperature=0, max_tokens=512, num_predict=512, repeat_penalty=1.3, metadata={"num_predict":512,"max_tokens":512}, ) self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=2048, chunk_overlap=128) self.prompt = PromptTemplate.from_template( """ <|im_start|> You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use 512 characters maximum and keep the answer concise. Question: {question} Context: {context} Answer: <|im_end|> """ ) def ingest(self, pdf_file_path: str): docs = PyMuPDFLoader(file_path=pdf_file_path).load() chunks = self.text_splitter.split_documents(docs) chunks = filter_complex_metadata(chunks) vector_store = Chroma.from_documents(documents=chunks, embedding=FastEmbedEmbeddings()) self.retriever = vector_store.as_retriever( search_type="similarity_score_threshold", search_kwargs={ "k": 4, "score_threshold": 0.5, }, ) self.chain = ({"context": self.retriever, "question": RunnablePassthrough()} | self.prompt | self.model | StrOutputParser()) def ask(self, query: str): if not self.chain: return "Please, add a PDF document first." return self.chain.invoke(query) def clear(self): self.vector_store = None self.retriever = None self.chain = None