import os import logging from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, Settings, get_response_synthesizer) from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import TextNode, MetadataMode from llama_index.core.vector_stores import VectorStoreQuery from llama_index.llms.llama_cpp import LlamaCPP from llama_index.embeddings.fastembed import FastEmbedEmbedding from llama_index.vector_stores.qdrant import QdrantVectorStore from qdrant_client import QdrantClient from llama_index.readers.file.docs.base import DocxReader, HWPReader, PDFReader store_dir = os.path.expanduser("~/wtp_be_store/") logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class ChatPDF: pdf_count = 0 text_chunks = [] doc_ids = [] nodes = [] def __init__(self): self.text_parser = SentenceSplitter(chunk_size=512, chunk_overlap=24) logger.info("initializing the vector store related objects") self.client = QdrantClient(path=store_dir) self.vector_store = QdrantVectorStore( client=self.client, collection_name="rag_documents", # enable_hybrid=True ) logger.info("initializing the FastEmbedEmbedding") self.embed_model = FastEmbedEmbedding( # model_name="BAAI/bge-small-en" ) llm = LlamaCPP( model_url="https://huggingface.co/Qwen/Qwen2-0.5B-Instruct-GGUF/resolve/main/qwen2-0_5b-instruct-fp16.gguf", temperature=0.1, max_new_tokens=256, generate_kwargs={"max_tokens": 256, "temperature": 0.1, "top_k": 3}, # messages_to_prompt=self.messages_to_prompt, # completion_to_prompt=self.completion_to_prompt, verbose=True, ) # tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct") # tokenizer.save_pretrained("./models/tokenizer/") logger.info("initializing the global settings") Settings.text_splitter = self.text_parser Settings.embed_model = self.embed_model Settings.llm = llm # Settings.tokenzier = tokenizer Settings.transformations = [self.text_parser] def ingest(self, files_dir: str): docs = SimpleDirectoryReader(input_dir=files_dir).load_data() logger.info("enumerating docs") for doc_idx, doc in enumerate(docs): self.pdf_count = self.pdf_count + 1 curr_text_chunks = self.text_parser.split_text(doc.text) self.text_chunks.extend(curr_text_chunks) self.doc_ids.extend([doc_idx] * len(curr_text_chunks)) logger.info("enumerating text_chunks") for idx, text_chunk in enumerate(self.text_chunks): node = TextNode(text=text_chunk) # src_doc = docs[self.doc_ids[idx]] # node.metadata = src_doc.metadata if node.get_content(metadata_mode=MetadataMode.EMBED): self.nodes.append(node) logger.info("enumerating nodes") for node in self.nodes: node_embedding = self.embed_model.get_text_embedding( node.get_content(metadata_mode=MetadataMode.ALL) ) node.embedding = node_embedding logger.info("initializing the storage context") storage_context = StorageContext.from_defaults(vector_store=self.vector_store) logger.info("indexing the nodes in VectorStoreIndex") index = VectorStoreIndex( nodes=self.nodes, storage_context=storage_context, transformations=Settings.transformations, ) self.query_engine = index.as_query_engine( streaming=True, similarity_top_k=3, ) def ask(self, query: str): logger.info("retrieving the response to the query") streaming_response = self.query_engine.query(query) return streaming_response def clear(self): if self.doc_ids: self.client.delete(collection_name="rag_documents", points_selector=self.doc_ids) self.pdf_count = 0 self.text_chunks = [] self.doc_ids = [] self.nodes = []