import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from torch.utils.data import DataLoader, TensorDataset from tqdm import tqdm import os import glob device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class FastAutoencoder(nn.Module): def __init__(self, n_dirs: int, d_model: int, k: int, auxk: int, multik: int, dead_steps_threshold: int = 266): super().__init__() self.n_dirs = n_dirs self.d_model = d_model self.k = k self.auxk = auxk self.multik = multik self.dead_steps_threshold = dead_steps_threshold self.encoder = nn.Linear(d_model, n_dirs, bias=False) self.decoder = nn.Linear(n_dirs, d_model, bias=False) self.pre_bias = nn.Parameter(torch.zeros(d_model)) self.latent_bias = nn.Parameter(torch.zeros(n_dirs)) self.stats_last_nonzero = torch.zeros(n_dirs, dtype=torch.long, device=device) def forward(self, x): x = x - self.pre_bias latents_pre_act = self.encoder(x) + self.latent_bias # Main top-k selection topk_values, topk_indices = torch.topk(latents_pre_act, k=self.k, dim=-1) topk_values = F.relu(topk_values) multik_values, multik_indices = torch.topk(latents_pre_act, k=4*self.k, dim=-1) multik_values = F.relu(multik_values) latents = torch.zeros_like(latents_pre_act) latents.scatter_(-1, topk_indices, topk_values) multik_latents = torch.zeros_like(latents_pre_act) multik_latents.scatter_(-1, multik_indices, multik_values) # Update stats_last_nonzero self.stats_last_nonzero += 1 self.stats_last_nonzero.scatter_(0, topk_indices.unique(), 0) recons = self.decoder(latents) + self.pre_bias multik_recons = self.decoder(multik_latents) + self.pre_bias # AuxK if self.auxk is not None: # Create dead latents mask dead_mask = (self.stats_last_nonzero > self.dead_steps_threshold).float() # Apply mask to latents_pre_act dead_latents_pre_act = latents_pre_act * dead_mask # Select top-k_aux from dead latents auxk_values, auxk_indices = torch.topk(dead_latents_pre_act, k=self.auxk, dim=-1) auxk_values = F.relu(auxk_values) else: auxk_values, auxk_indices = None, None return recons, { "topk_indices": topk_indices, "topk_values": topk_values, "multik_indices": multik_indices, "multik_values": multik_values, "multik_recons": multik_recons, "auxk_indices": auxk_indices, "auxk_values": auxk_values, "latents_pre_act": latents_pre_act, "latents_post_act": latents, } def decode_sparse(self, indices, values): latents = torch.zeros(self.n_dirs, device=indices.device) latents.scatter_(-1, indices, values) return self.decoder(latents) + self.pre_bias # def decode_sparse(self, indices, values): # latents = torch.zeros(1, self.n_dirs, device=indices.device, dtype=torch.float32) # latents.scatter_(-1, indices.unsqueeze(0), values.unsqueeze(0)) # return self.decoder(latents.squeeze(0)) + self.pre_bias def print_tensor_info(self, tensor, name): print(f"{name} - Shape: {tensor.shape}, Dtype: {tensor.dtype}, Device: {tensor.device}") def decode_clamp(self, latents, clamp): topk_values, topk_indices = torch.topk(latents, k = 64, dim=-1) topk_values = F.relu(topk_values) latents = torch.zeros_like(latents) latents.scatter_(-1, topk_indices, topk_values) # multiply latents by clamp, which is 1D but has has the same size as each latent vector latents = latents * clamp return self.decoder(latents) + self.pre_bias def decode_at_k(self, latents, k): topk_values, topk_indices = torch.topk(latents, k=k, dim=-1) topk_values = F.relu(topk_values) latents = torch.zeros_like(latents) latents.scatter_(-1, topk_indices, topk_values) return self.decoder(latents) + self.pre_bias def unit_norm_decoder_(autoencoder: FastAutoencoder) -> None: with torch.no_grad(): autoencoder.decoder.weight.div_(autoencoder.decoder.weight.norm(dim=0, keepdim=True)) def unit_norm_decoder_grad_adjustment_(autoencoder: FastAutoencoder) -> None: if autoencoder.decoder.weight.grad is not None: with torch.no_grad(): proj = torch.sum(autoencoder.decoder.weight * autoencoder.decoder.weight.grad, dim=0, keepdim=True) autoencoder.decoder.weight.grad.sub_(proj * autoencoder.decoder.weight) def mse(output, target): return F.mse_loss(output, target) def normalized_mse(recon, xs): return mse(recon, xs) / mse(xs.mean(dim=0, keepdim=True).expand_as(xs), xs) def loss_fn(ae, x, recons, info, auxk_coef, multik_coef): recons_loss = normalized_mse(recons, x) recons_loss += multik_coef * normalized_mse(info["multik_recons"], x) if ae.auxk is not None: e = x - recons.detach() # reconstruction error auxk_latents = torch.zeros_like(info["latents_pre_act"]) auxk_latents.scatter_(-1, info["auxk_indices"], info["auxk_values"]) e_hat = ae.decoder(auxk_latents) # reconstruction of error using dead latents auxk_loss = normalized_mse(e_hat, e) total_loss = recons_loss + auxk_coef * auxk_loss else: auxk_loss = torch.tensor(0.0, device=device) total_loss = recons_loss return total_loss, recons_loss, auxk_loss def init_from_data_(ae, data_sample): # set pre_bias to median of data ae.pre_bias.data = torch.median(data_sample, dim=0).values nn.init.xavier_uniform_(ae.decoder.weight) # decoder is unit norm unit_norm_decoder_(ae) # encoder as transpose of decoder ae.encoder.weight.data = ae.decoder.weight.t().clone() nn.init.zeros_(ae.latent_bias)