Spaces:
Runtime error
Runtime error
Create generation.py
Browse files- llama/generation.py +77 -0
llama/generation.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
| 3 |
+
|
| 4 |
+
from typing import List
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
from llama.tokenizer import Tokenizer
|
| 9 |
+
from llama.model import Transformer
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class LLaMA:
|
| 13 |
+
def __init__(self, model: Transformer, tokenizer: Tokenizer):
|
| 14 |
+
self.model = model
|
| 15 |
+
self.tokenizer = tokenizer
|
| 16 |
+
|
| 17 |
+
def generate(
|
| 18 |
+
self,
|
| 19 |
+
prompts: List[str],
|
| 20 |
+
max_gen_len: int,
|
| 21 |
+
temperature: float = 0.8,
|
| 22 |
+
top_p: float = 0.95,
|
| 23 |
+
) -> List[str]:
|
| 24 |
+
bsz = len(prompts)
|
| 25 |
+
params = self.model.params
|
| 26 |
+
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
|
| 27 |
+
|
| 28 |
+
prompt_tokens = [self.tokenizer.encode(x, bos=True, eos=False) for x in prompts]
|
| 29 |
+
|
| 30 |
+
min_prompt_size = min([len(t) for t in prompt_tokens])
|
| 31 |
+
max_prompt_size = max([len(t) for t in prompt_tokens])
|
| 32 |
+
|
| 33 |
+
total_len = min(params.max_seq_len, max_gen_len + max_prompt_size)
|
| 34 |
+
|
| 35 |
+
tokens = torch.full((bsz, total_len), self.tokenizer.pad_id).cuda().long()
|
| 36 |
+
for k, t in enumerate(prompt_tokens):
|
| 37 |
+
tokens[k, : len(t)] = torch.tensor(t).long()
|
| 38 |
+
input_text_mask = tokens != self.tokenizer.pad_id
|
| 39 |
+
start_pos = min_prompt_size
|
| 40 |
+
prev_pos = 0
|
| 41 |
+
for cur_pos in range(start_pos, total_len):
|
| 42 |
+
logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
|
| 43 |
+
if temperature > 0:
|
| 44 |
+
probs = torch.softmax(logits / temperature, dim=-1)
|
| 45 |
+
next_token = sample_top_p(probs, top_p)
|
| 46 |
+
else:
|
| 47 |
+
next_token = torch.argmax(logits, dim=-1)
|
| 48 |
+
next_token = next_token.reshape(-1)
|
| 49 |
+
# only replace token if prompt has already been generated
|
| 50 |
+
next_token = torch.where(
|
| 51 |
+
input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
|
| 52 |
+
)
|
| 53 |
+
tokens[:, cur_pos] = next_token
|
| 54 |
+
prev_pos = cur_pos
|
| 55 |
+
|
| 56 |
+
decoded = []
|
| 57 |
+
for i, t in enumerate(tokens.tolist()):
|
| 58 |
+
# cut to max gen len
|
| 59 |
+
t = t[: len(prompt_tokens[i]) + max_gen_len]
|
| 60 |
+
# cut to eos tok if any
|
| 61 |
+
try:
|
| 62 |
+
t = t[: t.index(self.tokenizer.eos_id)]
|
| 63 |
+
except ValueError:
|
| 64 |
+
pass
|
| 65 |
+
decoded.append(self.tokenizer.decode(t))
|
| 66 |
+
return decoded
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def sample_top_p(probs, p):
|
| 70 |
+
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
| 71 |
+
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
| 72 |
+
mask = probs_sum - probs_sort > p
|
| 73 |
+
probs_sort[mask] = 0.0
|
| 74 |
+
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
| 75 |
+
next_token = torch.multinomial(probs_sort, num_samples=1)
|
| 76 |
+
next_token = torch.gather(probs_idx, -1, next_token)
|
| 77 |
+
return next_token
|