"""⭐ Text Classification with Optimum and ONNXRuntime Author: - @ChainYo - https://github.com/ChainYo """ import streamlit as st from transformers import AutoTokenizer, AutoModel, pipeline from optimum.onnxruntime import ORTModelForSequenceClassification from optimum.pipelines import pipeline MODEL_PATH = "cardiffnlp/twitter-roberta-base-sentiment-latest" st.set_page_config(page_title="Optimum Text Classification", page_icon="⭐") st.title("🤗 Optimum Text Classification") st.subheader("Sentiment analysis with 🤗 Optimum and ONNXRuntime") st.markdown(""" [![GitHub](https://img.shields.io/badge/-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/ChainYo) [![HuggingFace](https://img.shields.io/badge/-yellow.svg?style=for-the-badge&logo=)](https://huggingface.co/ChainYo) [![LinkedIn](https://img.shields.io/badge/-%230077B5.svg?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/thomas-chaigneau-dev/) [![Discord](https://img.shields.io/badge/Chainyo%233610-%237289DA.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/) """) if "tokenizer" not in st.session_state: tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) st.session_state["tokenizer"] = tokenizer if "ort_model" not in st.session_state: ort_model = ORTModelForSequenceClassification.from_pretrained(MODEL_PATH, from_transformers=True) st.session_state["ort_model"] = ort_model if "pt_model" not in st.session_state: pt_model = AutoModel.from_pretrained(MODEL_PATH) st.session_state["pt_model"] = pt_model if "ort_pipeline" not in st.session_state: ort_pipeline = pipeline( "text-classification", tokenizer=st.session_state["tokenizer"], model=st.session_state["ort_model"] ) st.session_state["ort_pipeline"] = ort_pipeline if "pt_pipeline" not in st.session_state: pt_pipeline = pipeline( "text-classification", tokenizer=st.session_state["tokenizer"], model=st.session_state["pt_model"] ) st.session_state["pt_pipeline"] = pt_pipeline model_format = st.radio("Choose the model format", ("PyTorch", "ONNXRuntime")) optimized = st.checkbox("Optimize the model for inference", value=False) quantized = st.checkbox("Quantize the model", value=False) if model_format == "PyTorch": optimized.disabled = True quantized.disabled = True