from gradio_huggingfacehub_search import HuggingfaceHubSearch from huggingface_hub import HfApi import matplotlib.pyplot as plt from typing import Tuple, Optional import pandas as pd import gradio as gr import duckdb import requests import llama_cpp import instructor import spaces import enum from pydantic import BaseModel, Field BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co" view_name = "dataset_view" hf_api = HfApi() conn = duckdb.connect() llama = llama_cpp.Llama( model_path="Hermes-2-Pro-Llama-3-8B-Q8_0.gguf", n_gpu_layers=-1, chat_format="chatml", n_ctx=2048, verbose=False, temperature=0.1, ) create = instructor.patch( create=llama.create_chat_completion_openai_v1, mode=instructor.Mode.JSON_SCHEMA, ) class OutputTypes(str, enum.Enum): TABLE = "table" BARCHART = "barchart" LINECHART = "linechart" class SQLResponse(BaseModel): sql: str visualization_type: Optional[OutputTypes] = Field( None, description="The type of visualization to display" ) data_key: Optional[str] = Field( None, description="The column name from the sql query that contains the data for chart responses", ) label_key: Optional[str] = Field( None, description="The column name from the sql query that contains the labels for chart responses", ) def get_dataset_ddl(dataset_id: str) -> str: response = requests.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset_id}") response.raise_for_status() # Check if the request was successful first_parquet = response.json().get("parquet_files", [])[0] first_parquet_url = first_parquet.get("url") if not first_parquet_url: raise ValueError("No valid URL found for the first parquet file.") conn.execute( f"CREATE OR REPLACE VIEW {view_name} as SELECT * FROM read_parquet('{first_parquet_url}');" ) dataset_ddl = conn.execute(f"PRAGMA table_info('{view_name}');").fetchall() column_data_types = ",\n\t".join( [f"{column[1]} {column[2]}" for column in dataset_ddl] ) sql_ddl = """ CREATE TABLE {} ( {} ); """.format( view_name, column_data_types ) return sql_ddl @spaces.GPU def generate_query(dataset_id: str, query: str) -> str: ddl = get_dataset_ddl(dataset_id) system_prompt = f""" You are an expert SQL assistant with access to the following PostgreSQL Table: ```sql {ddl} ``` Please assist the user by writing a SQL query that answers the user's question. Use Label Key as the column name for the x-axis and Data Key as the column name for the y-axis for chart responses. The label key and data key must be present in the SQL output. """ print("Calling LLM with system prompt: ", system_prompt) resp: SQLResponse = create( model="Hermes-2-Pro-Llama-3-8B", messages=[ {"role": "system", "content": system_prompt}, { "role": "user", "content": query, }, ], response_model=SQLResponse, ) print("Received Response: ", resp) return resp def query_dataset(dataset_id: str, query: str) -> Tuple[pd.DataFrame, str, plt.Figure]: response: SQLResponse = generate_query(dataset_id, query) print("Querying Parquet...") df = conn.execute(response.sql).fetchdf() plot = None # handle incorrect data and label keys better if response.label_key and response.label_key not in df.columns: response.label_key = None if response.data_key and response.data_key not in df.columns: response.data_key = None if response.visualization_type == OutputTypes.LINECHART: plot = df.plot( kind="line", x=response.label_key, y=response.data_key ).get_figure() plt.xticks(rotation=45, ha="right") plt.tight_layout() elif response.visualization_type == OutputTypes.BARCHART: plot = df.plot( kind="bar", x=response.label_key, y=response.data_key ).get_figure() plt.xticks(rotation=45, ha="right") plt.tight_layout() markdown_output = f"""```sql\n{response.sql}\n```""" return df, markdown_output, plot with gr.Blocks() as demo: gr.Markdown("# Query your HF Datasets with Natural Language 📈📊") dataset_id = HuggingfaceHubSearch( label="Hub Dataset ID", placeholder="Find your favorite dataset...", search_type="dataset", value="gretelai/synthetic_text_to_sql", ) user_query = gr.Textbox("", label="Ask anything...") examples = [ ["Show me a preview of the data"], ["Show me something interesting"], ["What is the largest length of sql query context?"], ["show me counts by sql_query_type in a bar chart"], ] gr.Examples(examples=examples, inputs=[user_query], outputs=[]) btn = gr.Button("Ask 🪄") sql_query = gr.Markdown(label="Output SQL Query") df = gr.DataFrame() plot = gr.Plot() btn.click( query_dataset, inputs=[dataset_id, user_query], outputs=[df, sql_query, plot], ) if __name__ == "__main__": demo.launch()