Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoProcessor, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel
|
3 |
import torch
|
4 |
|
5 |
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
@@ -13,6 +13,7 @@ blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image
|
|
13 |
|
14 |
vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
15 |
vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
|
|
16 |
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
|
@@ -20,12 +21,15 @@ git_model.to(device)
|
|
20 |
blip_model.to(device)
|
21 |
vitgpt_model.to(device)
|
22 |
|
23 |
-
def generate_caption(processor, model, image):
|
24 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
25 |
|
26 |
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
return generated_caption
|
31 |
|
@@ -35,7 +39,7 @@ def generate_captions(image):
|
|
35 |
|
36 |
caption_blip = generate_caption(blip_processor, blip_model, image)
|
37 |
|
38 |
-
caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image)
|
39 |
|
40 |
return caption_git, caption_blip, caption_vitgpt
|
41 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel
|
3 |
import torch
|
4 |
|
5 |
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
|
|
13 |
|
14 |
vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
15 |
vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
16 |
+
vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
17 |
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
|
|
|
21 |
blip_model.to(device)
|
22 |
vitgpt_model.to(device)
|
23 |
|
24 |
+
def generate_caption(processor, model, image, tokenizer=None):
|
25 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
26 |
|
27 |
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
|
28 |
+
|
29 |
+
if tokenizer is not None:
|
30 |
+
generated_ids = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
31 |
+
else:
|
32 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
33 |
|
34 |
return generated_caption
|
35 |
|
|
|
39 |
|
40 |
caption_blip = generate_caption(blip_processor, blip_model, image)
|
41 |
|
42 |
+
caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
|
43 |
|
44 |
return caption_git, caption_blip, caption_vitgpt
|
45 |
|