import gradio_client from gradio_client import Client, file from urllib.parse import quote import numpy as np import gradio as gr def generate_img(prompt): client = Client("ameerazam08/SDXS-GPU-Demo") client.view_api() result = client.predict( prompt=prompt, api_name="/generate_image" ) return result def pollinations_url_seedless(a, width=512, height=512): urlprompt=quote(str(a)) url=f"https://image.pollinations.ai/prompt/{urlprompt}?width={width}&height={height}" return url def interrogate(img): from gradio_client import Client # client = Client("fffiloni/CLIP-Interrogator-2") # client.view_api() client = Client("https://pharmapsychotic-clip-interrogator.hf.space/") client.view_api() result = client.predict( img, # str (filepath or URL to image) "ViT-L (best for Stable Diffusion 1.*)", # str (Option from: ['ViT-L (best for Stable Diffusion 1.*)']) "best", # str in 'Mode' Radio component fn_index=3 ) return result def rountrip(img): prompt=interrogate(img) print(prompt) url=pollinations_url_seedless(prompt) return generate_img(prompt),prompt demo = gr.Interface(rountrip, gr.Image(type= 'filepath'),[gr.Image(type= 'filepath'),"textbox"]) demo.launch()