Spaces:
Runtime error
Runtime error
File size: 3,234 Bytes
8f08f12 98fb501 8f08f12 229734c 8f08f12 229734c 8f08f12 229734c 8f08f12 229734c 8f08f12 229734c 8f08f12 229734c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import json
import os
from pprint import pprint
import bitsandbytes as bnb
import pandas as pd
import torch
import torch.nn as nn
import transformers
from datasets import load_dataset
from huggingface_hub import notebook_login
from peft import (
LoraConfig,
PeftConfig,
PeftModel,
get_peft_model,
prepare_model_for_kbit_training,
)
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
import gradio as gr
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
PEFT_MODEL = "cdy3870/Falcon-Fetch-Bot"
config = PeftConfig.from_pretrained(PEFT_MODEL)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
return_dict=True,
device_map="auto",
trust_remote_code=True, load_in_8bit=False, offload_folder="offload"
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token
model = PeftModel.from_pretrained(model, PEFT_MODEL)
generation_config = model.generation_config
generation_config.max_new_tokens = 150
generation_config.temperature = 0.6
generation_config.top_p = 0.7
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
def main():
with gr.Blocks() as demo:
def update_temp(temp):
generation_config.temperature = temp
def update_tokens(tokens):
generation_config.max_new_tokens = tokens
chatbot = gr.Chatbot(label="Fetch Rewards Chatbot")
temperature = gr.Slider(0, 1, value=0.6, step=0.1, label="Creativity", interactive=True)
temperature.change(fn=update_temp, inputs=temperature)
tokens = gr.Slider(50, 200, value=100, step=50, label="Length", interactive=True)
tokens.change(fn=update_tokens, inputs=tokens)
msg = gr.Textbox(label="", placeholder="Ask anything about Fetch!")
clear = gr.Button("Clear Log")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history):
message = history[-1][0]
prompt = f"""
<human>: {message}
<assistant>:
""".strip()
result = pipeline(
prompt,
generation_config=generation_config,
)
# print(result)
parsed_result = result[0]["generated_text"].split("<assistant>:")[1][1:].split("\n")[0]
history[-1][1] = ""
for character in parsed_result:
history[-1][1] += character
time.sleep(0.01)
yield history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue()
demo.launch()
if __name__ == "__main__":
main() |