import os import torch import random import shutil import librosa import warnings import numpy as np import gradio as gr import librosa.display import matplotlib.pyplot as plt from utils import get_modelist, find_wav_files, embed_img, TEMP_DIR from model import EvalNet TRANSLATE = { "vibrato": "揉弦 Rou xian", "trill": "颤音 Chan yin", "tremolo": "颤弓 Chan gong", "staccato": "顿弓 Dun gong", "ricochet": "抛弓 Pao gong", "pizzicato": "拨弦 Bo xian", "percussive": "击弓 Ji gong", "legato_slide_glissando": "连滑音 Lian hua yin", "harmonic": "泛音 Fan yin", "diangong": "垫弓 Dian gong", "detache": "分弓 Fen gong", } CLASSES = list(TRANSLATE.keys()) SAMPLE_RATE = 44100 def circular_padding(y: np.ndarray, sr: int, dur=3): if len(y) >= sr * dur: return y[: sr * dur] size = sr * dur // len(y) + int((sr * dur) % len(y) > 0) arrays = [] for _ in range(size): arrays.append(y) y = np.hstack(arrays) return y[: sr * dur] def wav2mel(audio_path: str): os.makedirs(TEMP_DIR, exist_ok=True) try: y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) y = circular_padding(y, sr) mel_spec = librosa.feature.melspectrogram(y=y, sr=sr) log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) librosa.display.specshow(log_mel_spec) plt.axis("off") plt.savefig( f"{TEMP_DIR}/output.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() except Exception as e: print(f"Error converting {audio_path} : {e}") def wav2cqt(audio_path: str): os.makedirs(TEMP_DIR, exist_ok=True) try: y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) y = circular_padding(y, sr) cqt_spec = librosa.cqt(y=y, sr=sr) log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max) librosa.display.specshow(log_cqt_spec) plt.axis("off") plt.savefig( f"{TEMP_DIR}/output.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() except Exception as e: print(f"Error converting {audio_path} : {e}") def wav2chroma(audio_path: str): os.makedirs(TEMP_DIR, exist_ok=True) try: y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) y = circular_padding(y, sr) chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr) log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max) librosa.display.specshow(log_chroma_spec) plt.axis("off") plt.savefig( f"{TEMP_DIR}/output.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() except Exception as e: print(f"Error converting {audio_path} : {e}") def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR): if os.path.exists(folder_path): shutil.rmtree(folder_path) if not wav_path: return None, "请输入音频 Please input an audio!" try: model = EvalNet(log_name, len(TRANSLATE)).model except Exception as e: return None, f"{e}" spec = log_name.split("_")[-3] eval("wav2%s" % spec)(wav_path) input = embed_img(f"{folder_path}/output.jpg") output: torch.Tensor = model(input) pred_id = torch.max(output.data, 1)[1] return ( os.path.basename(wav_path), f"{TRANSLATE[CLASSES[pred_id]]} ({CLASSES[pred_id].capitalize()})", ) if __name__ == "__main__": warnings.filterwarnings("ignore") models = get_modelist() examples = [] example_wavs = find_wav_files() model_num = len(models) for wav in example_wavs: examples.append([wav, models[random.randint(0, model_num - 1)]]) with gr.Blocks() as demo: gr.Interface( fn=infer, inputs=[ gr.Audio(label="上传录音 Upload a recording", type="filepath"), gr.Dropdown( choices=models, label="选择模型 Select a model", value=models[0] ), ], outputs=[ gr.Textbox(label="音频文件名 Audio filename", show_copy_button=True), gr.Textbox( label="演奏技法识别 Playing tech recognition", show_copy_button=True ), ], examples=examples, cache_examples=False, allow_flagging="never", title="建议录音时长保持在 3s 左右
It is recommended to keep the recording length around 3s.", ) gr.Markdown( """ # 引用 Cite ```bibtex @dataset{zhaorui_liu_2021_5676893, author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han}, title = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research}, month = {mar}, year = {2024}, publisher = {HuggingFace}, version = {1.2}, url = {https://huggingface.co/ccmusic-database} } ```""" ) demo.launch()