Spaces:
Running
Running
File size: 6,813 Bytes
82336dd b6b77a2 82336dd b6b77a2 82336dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import os
import torch
import random
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from utils import get_modelist, find_wav_files, embed_img, TEMP_DIR
from collections import Counter
from model import EvalNet
TRANSLATE = {
"m_bel": "男声美声唱法 (Bel Canto, Male)",
"f_bel": "女声美声唱法 (Bel Canto, Female)",
"m_folk": "男声民族唱法 (Folk Singing, Male)",
"f_folk": "女声民族唱法 (Folk Singing, Female)",
}
CLASSES = list(TRANSLATE.keys())
SAMPLE_RATE = 22050
def wav2mel(audio_path: str, width=1.6, topdb=40):
os.makedirs(TEMP_DIR, exist_ok=True)
try:
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
non_silents = librosa.effects.split(y, top_db=topdb)
non_silent = np.concatenate([y[start:end] for start, end in non_silents])
mel_spec = librosa.feature.melspectrogram(y=non_silent, sr=sr)
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
dur = librosa.get_duration(y=non_silent, sr=sr)
total_frames = log_mel_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_mel_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/mel_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def wav2cqt(audio_path: str, width=1.6, topdb=40):
os.makedirs(TEMP_DIR, exist_ok=True)
try:
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
non_silents = librosa.effects.split(y, top_db=topdb)
non_silent = np.concatenate([y[start:end] for start, end in non_silents])
cqt_spec = librosa.cqt(y=non_silent, sr=sr)
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=non_silent, sr=sr)
total_frames = log_cqt_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_cqt_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/cqt_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def wav2chroma(audio_path: str, width=1.6, topdb=40):
os.makedirs(TEMP_DIR, exist_ok=True)
try:
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
non_silents = librosa.effects.split(y, top_db=topdb)
non_silent = np.concatenate([y[start:end] for start, end in non_silents])
chroma_spec = librosa.feature.chroma_stft(y=non_silent, sr=sr)
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=non_silent, sr=sr)
total_frames = log_chroma_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_chroma_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/chroma_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def most_common_element(input_list: list):
counter = Counter(input_list)
mce, _ = counter.most_common(1)[0]
return mce
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
if not wav_path:
return None, "请输入音频 Please input an audio!"
try:
model = EvalNet(log_name, len(TRANSLATE)).model
except Exception as e:
return None, f"{e}"
spec = log_name.split("_")[-3]
eval("wav2%s" % spec)(wav_path)
outputs = []
all_files = os.listdir(folder_path)
for file_name in all_files:
if file_name.lower().endswith(".jpg"):
file_path = os.path.join(folder_path, file_name)
input = embed_img(file_path)
output: torch.Tensor = model(input)
pred_id = torch.max(output.data, 1)[1]
outputs.append(int(pred_id))
max_count_item = most_common_element(outputs)
shutil.rmtree(folder_path)
return os.path.basename(wav_path), TRANSLATE[CLASSES[max_count_item]]
if __name__ == "__main__":
warnings.filterwarnings("ignore")
models = get_modelist()
examples = []
example_wavs = find_wav_files()
model_num = len(models)
for wav in example_wavs:
examples.append([wav, models[random.randint(0, model_num - 1)]])
with gr.Blocks() as demo:
gr.Interface(
fn=infer,
inputs=[
gr.Audio(label="上传录音 Upload a recording (>40dB)", type="filepath"),
gr.Dropdown(
choices=models, label="选择模型 Select a model", value=models[0]
),
],
outputs=[
gr.Textbox(label="音频文件名 Audio filename", show_copy_button=True),
gr.Textbox(
label="唱法识别 Singing method recognition", show_copy_button=True
),
],
examples=examples,
cache_examples=False,
allow_flagging="never",
title="建议录音时长保持在 5s 左右, 过长会影响识别效率<br>It is recommended to keep the recording length around 5s, too long will affect the recognition efficiency.",
)
gr.Markdown(
"""
# 引用 Cite
```bibtex
@dataset{zhaorui_liu_2021_5676893,
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
title = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
month = {mar},
year = {2024},
publisher = {HuggingFace},
version = {1.2},
url = {https://huggingface.co/ccmusic-database}
}
```"""
)
demo.launch()
|