File size: 6,813 Bytes
82336dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b77a2
82336dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b77a2
82336dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import torch
import random
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from utils import get_modelist, find_wav_files, embed_img, TEMP_DIR
from collections import Counter
from model import EvalNet


TRANSLATE = {
    "m_bel": "男声美声唱法 (Bel Canto, Male)",
    "f_bel": "女声美声唱法 (Bel Canto, Female)",
    "m_folk": "男声民族唱法 (Folk Singing, Male)",
    "f_folk": "女声民族唱法 (Folk Singing, Female)",
}
CLASSES = list(TRANSLATE.keys())
SAMPLE_RATE = 22050


def wav2mel(audio_path: str, width=1.6, topdb=40):
    os.makedirs(TEMP_DIR, exist_ok=True)
    try:
        y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
        non_silents = librosa.effects.split(y, top_db=topdb)
        non_silent = np.concatenate([y[start:end] for start, end in non_silents])
        mel_spec = librosa.feature.melspectrogram(y=non_silent, sr=sr)
        log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
        dur = librosa.get_duration(y=non_silent, sr=sr)
        total_frames = log_mel_spec.shape[1]
        step = int(width * total_frames / dur)
        count = int(total_frames / step)
        begin = int(0.5 * (total_frames - count * step))
        end = begin + step * count
        for i in range(begin, end, step):
            librosa.display.specshow(log_mel_spec[:, i : i + step])
            plt.axis("off")
            plt.savefig(
                f"{TEMP_DIR}/mel_{round(dur, 2)}_{i}.jpg",
                bbox_inches="tight",
                pad_inches=0.0,
            )
            plt.close()

    except Exception as e:
        print(f"Error converting {audio_path} : {e}")


def wav2cqt(audio_path: str, width=1.6, topdb=40):
    os.makedirs(TEMP_DIR, exist_ok=True)
    try:
        y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
        non_silents = librosa.effects.split(y, top_db=topdb)
        non_silent = np.concatenate([y[start:end] for start, end in non_silents])
        cqt_spec = librosa.cqt(y=non_silent, sr=sr)
        log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
        dur = librosa.get_duration(y=non_silent, sr=sr)
        total_frames = log_cqt_spec.shape[1]
        step = int(width * total_frames / dur)
        count = int(total_frames / step)
        begin = int(0.5 * (total_frames - count * step))
        end = begin + step * count
        for i in range(begin, end, step):
            librosa.display.specshow(log_cqt_spec[:, i : i + step])
            plt.axis("off")
            plt.savefig(
                f"{TEMP_DIR}/cqt_{round(dur, 2)}_{i}.jpg",
                bbox_inches="tight",
                pad_inches=0.0,
            )
            plt.close()

    except Exception as e:
        print(f"Error converting {audio_path} : {e}")


def wav2chroma(audio_path: str, width=1.6, topdb=40):
    os.makedirs(TEMP_DIR, exist_ok=True)
    try:
        y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
        non_silents = librosa.effects.split(y, top_db=topdb)
        non_silent = np.concatenate([y[start:end] for start, end in non_silents])
        chroma_spec = librosa.feature.chroma_stft(y=non_silent, sr=sr)
        log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
        dur = librosa.get_duration(y=non_silent, sr=sr)
        total_frames = log_chroma_spec.shape[1]
        step = int(width * total_frames / dur)
        count = int(total_frames / step)
        begin = int(0.5 * (total_frames - count * step))
        end = begin + step * count
        for i in range(begin, end, step):
            librosa.display.specshow(log_chroma_spec[:, i : i + step])
            plt.axis("off")
            plt.savefig(
                f"{TEMP_DIR}/chroma_{round(dur, 2)}_{i}.jpg",
                bbox_inches="tight",
                pad_inches=0.0,
            )
            plt.close()

    except Exception as e:
        print(f"Error converting {audio_path} : {e}")


def most_common_element(input_list: list):
    counter = Counter(input_list)
    mce, _ = counter.most_common(1)[0]
    return mce


def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
    if os.path.exists(folder_path):
        shutil.rmtree(folder_path)

    if not wav_path:
        return None, "请输入音频 Please input an audio!"

    try:
        model = EvalNet(log_name, len(TRANSLATE)).model

    except Exception as e:
        return None, f"{e}"

    spec = log_name.split("_")[-3]
    eval("wav2%s" % spec)(wav_path)
    outputs = []
    all_files = os.listdir(folder_path)
    for file_name in all_files:
        if file_name.lower().endswith(".jpg"):
            file_path = os.path.join(folder_path, file_name)
            input = embed_img(file_path)
            output: torch.Tensor = model(input)
            pred_id = torch.max(output.data, 1)[1]
            outputs.append(int(pred_id))

    max_count_item = most_common_element(outputs)
    shutil.rmtree(folder_path)
    return os.path.basename(wav_path), TRANSLATE[CLASSES[max_count_item]]


if __name__ == "__main__":
    warnings.filterwarnings("ignore")
    models = get_modelist()
    examples = []
    example_wavs = find_wav_files()
    model_num = len(models)
    for wav in example_wavs:
        examples.append([wav, models[random.randint(0, model_num - 1)]])

    with gr.Blocks() as demo:
        gr.Interface(
            fn=infer,
            inputs=[
                gr.Audio(label="上传录音 Upload a recording (>40dB)", type="filepath"),
                gr.Dropdown(
                    choices=models, label="选择模型 Select a model", value=models[0]
                ),
            ],
            outputs=[
                gr.Textbox(label="音频文件名 Audio filename", show_copy_button=True),
                gr.Textbox(
                    label="唱法识别 Singing method recognition", show_copy_button=True
                ),
            ],
            examples=examples,
            cache_examples=False,
            allow_flagging="never",
            title="建议录音时长保持在 5s 左右, 过长会影响识别效率<br>It is recommended to keep the recording length around 5s, too long will affect the recognition efficiency.",
        )

        gr.Markdown(
            """
# 引用 Cite
```bibtex
@dataset{zhaorui_liu_2021_5676893,
  author       = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
  title        = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
  month        = {mar},
  year         = {2024},
  publisher    = {HuggingFace},
  version      = {1.2},
  url          = {https://huggingface.co/ccmusic-database}
}
```"""
        )

    demo.launch()