Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
import json # to work with JSON
|
| 2 |
import threading # to allow streaming response
|
| 3 |
import time # to pave the deliver of the message
|
| 4 |
|
|
@@ -6,46 +5,50 @@ import datasets # for loading RAG database
|
|
| 6 |
import faiss # to create a search index
|
| 7 |
import gradio # for the interface
|
| 8 |
import numpy # to work with vectors
|
| 9 |
-
import pandas # to work with pandas
|
| 10 |
import sentence_transformers # to load an embedding model
|
| 11 |
import spaces # for GPU
|
| 12 |
import transformers # to load an LLM
|
| 13 |
|
| 14 |
-
#
|
| 15 |
GREETING = (
|
| 16 |
"Howdy! I'm an AI agent that uses [retrieval-augmented generation](https://en.wikipedia.org/wiki/Retrieval-augmented_generation) "
|
| 17 |
"to answer questions about research published at [ASME IDETC](https://asmedigitalcollection.asme.org/IDETC-CIE) within the last 10 years or so. "
|
| 18 |
"I always try to cite my sources, but sometimes things get a little weird. "
|
| 19 |
"What can I tell you about today?"
|
| 20 |
)
|
|
|
|
|
|
|
| 21 |
EXAMPLE_QUERIES = [
|
| 22 |
"What's the difference between a markov chain and a hidden markov model?",
|
| 23 |
"What can you tell me about analytical target cascading?",
|
| 24 |
"What is known about different modes for human-AI teaming?",
|
| 25 |
]
|
|
|
|
|
|
|
| 26 |
EMBEDDING_MODEL_NAME = "all-MiniLM-L6-v2"
|
|
|
|
|
|
|
| 27 |
LLM_MODEL_NAME = "Qwen/Qwen2-7B-Instruct"
|
| 28 |
|
| 29 |
# Load the dataset and convert to pandas
|
| 30 |
data = datasets.load_dataset("ccm/rag-idetc")["train"].to_pandas()
|
| 31 |
|
| 32 |
# Load the model for later use in embeddings
|
| 33 |
-
|
| 34 |
|
| 35 |
# Create an LLM pipeline that we can send queries to
|
| 36 |
tokenizer = transformers.AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
|
| 37 |
streamer = transformers.TextIteratorStreamer(
|
| 38 |
tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 39 |
)
|
| 40 |
-
|
| 41 |
LLM_MODEL_NAME, torch_dtype="auto", device_map="auto"
|
| 42 |
)
|
| 43 |
|
| 44 |
# Create a FAISS index for fast similarity search
|
| 45 |
-
|
| 46 |
-
vectors = numpy.stack(data["embedding"].tolist(), axis=0).astype('float32')
|
| 47 |
index = faiss.IndexFlatL2(len(data["embedding"][0]))
|
| 48 |
-
index.metric_type =
|
| 49 |
faiss.normalize_L2(vectors)
|
| 50 |
index.train(vectors)
|
| 51 |
index.add(vectors)
|
|
@@ -60,7 +63,7 @@ def preprocess(query: str, k: int) -> tuple[str, str]:
|
|
| 60 |
Returns:
|
| 61 |
tuple[str, str]: A tuple containing the prompt and references
|
| 62 |
"""
|
| 63 |
-
encoded_query = numpy.expand_dims(
|
| 64 |
faiss.normalize_L2(encoded_query)
|
| 65 |
D, I = index.search(encoded_query, k)
|
| 66 |
top_five = data.loc[I[0]]
|
|
@@ -68,16 +71,16 @@ def preprocess(query: str, k: int) -> tuple[str, str]:
|
|
| 68 |
print(top_five["text"].values)
|
| 69 |
|
| 70 |
prompt = (
|
| 71 |
-
"You are an AI assistant who delights in helping people learn about research from the IDETC Conference."
|
| 72 |
"Your main task is to provide an ANSWER to the USER_QUERY based on the RESEARCH_EXCERPTS."
|
| 73 |
"Your ANSWER should be concise.\n\n"
|
| 74 |
-
"RESEARCH_EXCERPTS:\n{{
|
| 75 |
"USER_GUERY:\n{{QUERY_GOES_HERE}}\n\n"
|
| 76 |
"ANSWER:\n"
|
| 77 |
)
|
| 78 |
|
| 79 |
references = {}
|
| 80 |
-
|
| 81 |
|
| 82 |
for i in range(k):
|
| 83 |
title = top_five["title"].values[i]
|
|
@@ -86,21 +89,32 @@ def preprocess(query: str, k: int) -> tuple[str, str]:
|
|
| 86 |
path = top_five["path"].values[i]
|
| 87 |
text = top_five["text"].values[i]
|
| 88 |
|
| 89 |
-
|
|
|
|
|
|
|
| 90 |
header = "[" + title.title() + "](" + url + ")\n"
|
| 91 |
|
| 92 |
if header not in references.keys():
|
| 93 |
references[header] = []
|
| 94 |
|
| 95 |
references[header].append(text)
|
| 96 |
-
|
| 97 |
-
prompt = prompt.replace("{{
|
| 98 |
prompt = prompt.replace("{{QUERY_GOES_HERE}}", query)
|
| 99 |
|
| 100 |
print(references)
|
| 101 |
-
|
| 102 |
-
return prompt, "\n\n### References\n\n"
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
def postprocess(response: str, bypass_from_preprocessing: str) -> str:
|
| 105 |
"""
|
| 106 |
Applies a postprocessing step to the LLM's response before the user receives it
|
|
@@ -142,7 +156,7 @@ def reply(message: str, history: list[str]) -> str:
|
|
| 142 |
model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0")
|
| 143 |
|
| 144 |
generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=512)
|
| 145 |
-
t = threading.Thread(target=
|
| 146 |
t.start()
|
| 147 |
|
| 148 |
partial_message = ""
|
|
@@ -160,7 +174,10 @@ gradio.ChatInterface(
|
|
| 160 |
reply,
|
| 161 |
examples=EXAMPLE_QUERIES,
|
| 162 |
chatbot=gradio.Chatbot(
|
| 163 |
-
avatar_images=
|
|
|
|
|
|
|
|
|
|
| 164 |
show_label=False,
|
| 165 |
show_share_button=False,
|
| 166 |
show_copy_button=False,
|
|
@@ -172,5 +189,3 @@ gradio.ChatInterface(
|
|
| 172 |
undo_btn=None,
|
| 173 |
clear_btn=None,
|
| 174 |
).launch(debug=True)
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
| 1 |
import threading # to allow streaming response
|
| 2 |
import time # to pave the deliver of the message
|
| 3 |
|
|
|
|
| 5 |
import faiss # to create a search index
|
| 6 |
import gradio # for the interface
|
| 7 |
import numpy # to work with vectors
|
|
|
|
| 8 |
import sentence_transformers # to load an embedding model
|
| 9 |
import spaces # for GPU
|
| 10 |
import transformers # to load an LLM
|
| 11 |
|
| 12 |
+
# The greeting supplied by the agent when it starts
|
| 13 |
GREETING = (
|
| 14 |
"Howdy! I'm an AI agent that uses [retrieval-augmented generation](https://en.wikipedia.org/wiki/Retrieval-augmented_generation) "
|
| 15 |
"to answer questions about research published at [ASME IDETC](https://asmedigitalcollection.asme.org/IDETC-CIE) within the last 10 years or so. "
|
| 16 |
"I always try to cite my sources, but sometimes things get a little weird. "
|
| 17 |
"What can I tell you about today?"
|
| 18 |
)
|
| 19 |
+
|
| 20 |
+
# Example queries supplied in the interface
|
| 21 |
EXAMPLE_QUERIES = [
|
| 22 |
"What's the difference between a markov chain and a hidden markov model?",
|
| 23 |
"What can you tell me about analytical target cascading?",
|
| 24 |
"What is known about different modes for human-AI teaming?",
|
| 25 |
]
|
| 26 |
+
|
| 27 |
+
# The embedding model used
|
| 28 |
EMBEDDING_MODEL_NAME = "all-MiniLM-L6-v2"
|
| 29 |
+
|
| 30 |
+
# The conversational model used
|
| 31 |
LLM_MODEL_NAME = "Qwen/Qwen2-7B-Instruct"
|
| 32 |
|
| 33 |
# Load the dataset and convert to pandas
|
| 34 |
data = datasets.load_dataset("ccm/rag-idetc")["train"].to_pandas()
|
| 35 |
|
| 36 |
# Load the model for later use in embeddings
|
| 37 |
+
embedding_model = sentence_transformers.SentenceTransformer(EMBEDDING_MODEL_NAME)
|
| 38 |
|
| 39 |
# Create an LLM pipeline that we can send queries to
|
| 40 |
tokenizer = transformers.AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
|
| 41 |
streamer = transformers.TextIteratorStreamer(
|
| 42 |
tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 43 |
)
|
| 44 |
+
chat_model = transformers.AutoModelForCausalLM.from_pretrained(
|
| 45 |
LLM_MODEL_NAME, torch_dtype="auto", device_map="auto"
|
| 46 |
)
|
| 47 |
|
| 48 |
# Create a FAISS index for fast similarity search
|
| 49 |
+
vectors = numpy.stack(data["embedding"].tolist(), axis=0).astype("float32")
|
|
|
|
| 50 |
index = faiss.IndexFlatL2(len(data["embedding"][0]))
|
| 51 |
+
index.metric_type = faiss.METRIC_INNER_PRODUCT
|
| 52 |
faiss.normalize_L2(vectors)
|
| 53 |
index.train(vectors)
|
| 54 |
index.add(vectors)
|
|
|
|
| 63 |
Returns:
|
| 64 |
tuple[str, str]: A tuple containing the prompt and references
|
| 65 |
"""
|
| 66 |
+
encoded_query = numpy.expand_dims(embedding_model.encode(query), axis=0)
|
| 67 |
faiss.normalize_L2(encoded_query)
|
| 68 |
D, I = index.search(encoded_query, k)
|
| 69 |
top_five = data.loc[I[0]]
|
|
|
|
| 71 |
print(top_five["text"].values)
|
| 72 |
|
| 73 |
prompt = (
|
| 74 |
+
"You are an AI assistant who delights in helping people learn about research from the IDETC Conference."
|
| 75 |
"Your main task is to provide an ANSWER to the USER_QUERY based on the RESEARCH_EXCERPTS."
|
| 76 |
"Your ANSWER should be concise.\n\n"
|
| 77 |
+
"RESEARCH_EXCERPTS:\n{{EXCERPTS_GO_HERE}}\n\n"
|
| 78 |
"USER_GUERY:\n{{QUERY_GOES_HERE}}\n\n"
|
| 79 |
"ANSWER:\n"
|
| 80 |
)
|
| 81 |
|
| 82 |
references = {}
|
| 83 |
+
research_excerpts = ""
|
| 84 |
|
| 85 |
for i in range(k):
|
| 86 |
title = top_five["title"].values[i]
|
|
|
|
| 89 |
path = top_five["path"].values[i]
|
| 90 |
text = top_five["text"].values[i]
|
| 91 |
|
| 92 |
+
research_excerpts += (
|
| 93 |
+
str(i + i) + ". This excerpt is from: '" + title + "':\n" + text + "\n"
|
| 94 |
+
)
|
| 95 |
header = "[" + title.title() + "](" + url + ")\n"
|
| 96 |
|
| 97 |
if header not in references.keys():
|
| 98 |
references[header] = []
|
| 99 |
|
| 100 |
references[header].append(text)
|
| 101 |
+
|
| 102 |
+
prompt = prompt.replace("{{EXCERPTS_GO_HERE}}", research_excerpts)
|
| 103 |
prompt = prompt.replace("{{QUERY_GOES_HERE}}", query)
|
| 104 |
|
| 105 |
print(references)
|
| 106 |
+
|
| 107 |
+
return prompt, "\n\n### References\n\n" + "\n".join(
|
| 108 |
+
[
|
| 109 |
+
str(i + 1)
|
| 110 |
+
+ ". "
|
| 111 |
+
+ ref
|
| 112 |
+
+ "\n - ".join(["", *['"...' + x + '..."' for x in references[ref]]])
|
| 113 |
+
for i, ref in enumerate(references.keys())
|
| 114 |
+
]
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
def postprocess(response: str, bypass_from_preprocessing: str) -> str:
|
| 119 |
"""
|
| 120 |
Applies a postprocessing step to the LLM's response before the user receives it
|
|
|
|
| 156 |
model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0")
|
| 157 |
|
| 158 |
generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=512)
|
| 159 |
+
t = threading.Thread(target=chat_model.generate, kwargs=generate_kwargs)
|
| 160 |
t.start()
|
| 161 |
|
| 162 |
partial_message = ""
|
|
|
|
| 174 |
reply,
|
| 175 |
examples=EXAMPLE_QUERIES,
|
| 176 |
chatbot=gradio.Chatbot(
|
| 177 |
+
avatar_images=(
|
| 178 |
+
None,
|
| 179 |
+
"https://event.asme.org/Events/media/library/images/IDETC-CIE/IDETC-Logo-Announcements.png?ext=.png",
|
| 180 |
+
),
|
| 181 |
show_label=False,
|
| 182 |
show_share_button=False,
|
| 183 |
show_copy_button=False,
|
|
|
|
| 189 |
undo_btn=None,
|
| 190 |
clear_btn=None,
|
| 191 |
).launch(debug=True)
|
|
|
|
|
|