import torch import torch.nn as nn import numpy as np from torchvision import models, transforms import time import os import copy import pickle from PIL import Image import datetime import gdown import urllib.request import gradio as gr url = 'https://drive.google.com/file/d/1GGnkicLQwgcgLq6sWClC_Igi8PWFQyV1' #path_class_names = "./class_names_restnet_catsVSdogs.pkl" gdown.download(url, path_class_names, quiet=False, use_cookies=False) # Parameters DATASET_PATH = '/content/APTOS2019' PREP_PATH = DATASET_PATH + "/preprocessed/" MODEL_PATH= '/content/APTOS2019/checkpoints/checkpoint_convnext.pth' if not os.path.exists(PREP_PATH): os.mkdir(PREP_PATH) if not os.path.exists("/checkpoints"): os.mkdir("/checkpoints") def do_inference(): return 0 title = "ConvNeXt for Diabetic Retinopathy Detection" description = "" #examples = [['./cat.jpg'],['./dog.jpg']] #article="
" iface = gr.Interface( do_inference, title=title, description=description, ) iface.test_launch() #iface.launch()