Spaces:
Build error
Build error
import gradio as gr | |
from transformers import Wav2Vec2ForCTC, AutoProcessor, pipeline | |
from optimum.bettertransformer import BetterTransformer | |
import torch | |
import librosa | |
import json | |
model_id = "cawoylel/windanam_mms-1b-tts_v2" | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = Wav2Vec2ForCTC.from_pretrained(model_id) | |
def transcribe(audio_file_mic=None, audio_file_upload=None): | |
if audio_file_mic: | |
audio_file = audio_file_mic | |
elif audio_file_upload: | |
audio_file = audio_file_upload | |
else: | |
return "Please upload an audio file or record one" | |
# Make sure audio is 16kHz | |
speech, sample_rate = librosa.load(audio_file) | |
if sample_rate != 16000: | |
speech = librosa.resample(speech, orig_sr=sample_rate, target_sr=16000) | |
# Keep the same model in memory and simply switch out the language adapters by calling load_adapter() for the model and set_target_lang() for the tokenizer | |
processor.tokenizer.set_target_lang("ful") | |
inputs = processor(speech, sampling_rate=16_000, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs).logits | |
ids = torch.argmax(outputs, dim=-1)[0] | |
transcription = processor.decode(ids) | |
return transcription | |
description = '''Automatic Speech Recognition with [MMS](https://ai.facebook.com/blog/multilingual-model-speech-recognition/) (Massively Multilingual Speech) by Meta. | |
Supports [1162 languages](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html). Read the paper for more details: [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516).''' | |
iface = gr.Interface(fn=transcribe, | |
inputs=[ | |
gr.Audio(source="microphone", type="filepath", label="Record Audio"), | |
gr.Audio(source="upload", type="filepath", label="Upload Audio"), | |
], | |
outputs=gr.Textbox(label="Transcription"), | |
description=description | |
) | |
iface.launch() |