# =========================================== # ver01.01-5.workload-----app.py # =========================================== import asyncio import os import re import time import json import chainlit as cl #from tiktoken import encoding_for_model from langchain import hub from langchain_openai import OpenAI from langchain.chains import LLMChain, APIChain from langchain_core.prompts import PromptTemplate from langchain.memory.buffer import ConversationBufferMemory from langchain.memory import ConversationTokenBufferMemory from langchain.memory import ConversationSummaryMemory from api_docs_mck import api_docs_str #from faq_data import ansatte_faq_data, utleiere_faq_data #from personvernspolicy import personvernspolicy_data OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") daysoff_assistant_template = """ You are a customer support assistant (’kundeservice AI assistent’) for Daysoff. By default, you respond in Norwegian language, using a warm, direct, and professional tone. Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to to this. You do not provide information outside of this scope. If a question is not about this topic, respond with "Ooops da, jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser, kså må du nok kontakte kundeservice på kundeservice@daysoff.no😊" Chat History: {chat_history} Question: {question} Answer: """ daysoff_assistant_prompt = PromptTemplate( input_variables=['chat_history', 'question'], template=daysoff_assistant_template ) api_url_template = """ Given the following API Documentation for Daysoff's official booking information API: {api_docs} Your task is to construct the most efficient API URL to answer the user's question, ensuring the call is optimized to include only the necessary information. Question: {question} API URL: """ api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'], template=api_url_template) # If the response includes booking information, provide the information verbatim (do not summarize it.) api_response_template = """ With the API Documentation for Daysoff's official API: {api_docs} in mind, and the specific user question: {question}, and given this API URL: {api_url} for querying, and response from Daysoff's API: {api_response}, never refer the user to the API URL as your answer! You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved. This way you directly address the user's question in a manner that reflects the professionalism and warmth of a human customer service agent. Summary: """ api_response_prompt = PromptTemplate( input_variables=['api_docs', 'question', 'api_url', 'api_response'], template=api_response_template ) # --------------------------------------------------------------------------------------------------------- # 100 tokens ≃ 75 words # system prompt(s), total = 330 tokens # average api response = 250-300 tokens (current) # user input "reserved" = 400 tokens (300 words max. /English; Polish, Norwegian {..}?@tiktokenizer), could be reduc3d to 140 tokens ≃ 105 words # model output (max_tokens) = 2048 # ConversationBufferMemory = maintains raw chat history; crucial for "nuanced" follow-ups (e.g. "nuanced" ~ for non-English inputs) # ConversationTokenBufferMemory (max_token_limit) = 1318 (gives space in chat_history for approximately 10-15 exchanges, assuming ~100 tokens/exchange) # ConversationSummaryMemory = scalable approach, especially useful for extended or complex interactions, caveat: loss of granular context # --------------------------------------------------------------------------------------------------------- @cl.on_chat_start def setup_multiple_chains(): llm = OpenAI( model='gpt-3.5-turbo-instruct', temperature=0.7, openai_api_key=OPENAI_API_KEY, max_tokens=2048, top_p=0.9, frequency_penalty=0.1, presence_penalty=0.1 ) # --ConversationBufferMemory conversation_memory = ConversationBufferMemory(memory_key="chat_history", max_len=30, # --retains only the last 30 exchanges return_messages=True, ) # --ConversationTokenBufferMemory #conversation_memory = ConversationTokenBufferMemory(memory_key="chat_history", #max_token_limit=1318, #return_messages=True, #) # --ConversationSummaryMemory #conversation_memory = ConversationSummaryMemory(memory_key="chat_history", #return_messages=True, #) llm_chain = LLMChain(llm=llm, prompt=daysoff_assistant_prompt, memory=conversation_memory ) cl.user_session.set("llm_chain", llm_chain) api_chain = APIChain.from_llm_and_api_docs( llm=llm, api_docs=api_docs_str, api_url_prompt=api_url_prompt, api_response_prompt=api_response_prompt, verbose=True, limit_to_domains=None ) cl.user_session.set("api_chain", api_chain) @cl.on_message async def handle_message(message: cl.Message): user_message = message.content #.lower() llm_chain = cl.user_session.get("llm_chain") api_chain = cl.user_session.get("api_chain") booking_pattern = r'\b[A-Z]{6}\d{6}\b' endpoint_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking" if re.search(booking_pattern, user_message): bestillingskode = re.search(booking_pattern, user_message).group(0) question = f"Retrieve information for booking ID {endpoint_url}?search={bestillingskode}" response = await api_chain.acall( { "bestillingskode": bestillingskode, "question": question }, callbacks=[cl.AsyncLangchainCallbackHandler()]) else: response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) response_key = "output" if "output" in response else "text" await cl.Message(response.get(response_key, "")).send() return message.content