import os import warnings import gradio as gr from transformers import pipeline from transformers.utils import logging # Ignore warning that are not application related logging.set_verbosity_error() warnings.filterwarnings("ignore",category=FutureWarning) warnings.filterwarnings("ignore", message="Using the model-agnostic default `max_length`") # Load model image_captioning = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") # Perform inference def launch(input): out= image_captioning(input) return out[0]['generated_text'] # Create the gradio interface int_face = gr.Interface( launch, inputs=gr.Image(type="pil"), outputs="text" ) # Run the gradio interface int_face.launch()