Spaces:
Build error
Build error
Commit
·
3c53ea4
1
Parent(s):
89f557e
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import time
|
| 3 |
+
import sounddevice as sd
|
| 4 |
+
import soundfile as sf
|
| 5 |
+
import time
|
| 6 |
+
import whisper
|
| 7 |
+
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def SpeechToText(audio):
|
| 12 |
+
if audio == None : return ""
|
| 13 |
+
model = whisper.load_model("base")
|
| 14 |
+
audio = whisper.load_audio(audio)
|
| 15 |
+
audio = whisper.pad_or_trim(audio)
|
| 16 |
+
|
| 17 |
+
# make log-Mel spectrogram and move to the same device as the model
|
| 18 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
| 19 |
+
|
| 20 |
+
# Detect the Max probability of language ?
|
| 21 |
+
_, probs = model.detect_language(mel)
|
| 22 |
+
lang = f"Language: {max(probs, key=probs.get)}"
|
| 23 |
+
|
| 24 |
+
# Decode audio to Text
|
| 25 |
+
options = whisper.DecodingOptions(fp16 = False)
|
| 26 |
+
result = whisper.decode(model, mel, options)
|
| 27 |
+
return result.text
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def img_Generation(text):
|
| 31 |
+
print(text)
|
| 32 |
+
model_id = "stabilityai/stable-diffusion-2"
|
| 33 |
+
|
| 34 |
+
# Use the Euler scheduler here instead
|
| 35 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
| 36 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, revision="fp16", torch_dtype=torch.float16)
|
| 37 |
+
pipe = pipe.to("cuda")
|
| 38 |
+
image = pipe(text, num_inference_steps = 150).images[0]
|
| 39 |
+
image.save("img_1.png")
|
| 40 |
+
|
| 41 |
+
return image
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def transcribe(audio):
|
| 45 |
+
text = SpeechToText(audio)
|
| 46 |
+
image = img_Generation(text)
|
| 47 |
+
|
| 48 |
+
return image
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
gr.Interface(
|
| 52 |
+
fn=transcribe,
|
| 53 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
| 54 |
+
outputs="image",description="A Speech to Image Generation App Using OpenAI's Whisper",title= "Whisper2IMG").launch(share="True")
|