import torch import gradio as gr from transformers import pipeline import tempfile from neon_tts_plugin_coqui import CoquiTTS from datetime import datetime import time import psutil from mtranslate import translate MODEL_NAME = "cahya/whisper-medium-id" #this always needs to stay in line 8 :D sorry for the hackiness lang = "id" title = "Indonesian Whisperer" description = "Cross Language Speech to Speech (Indonesian/English to 25 other languages) using OpenAI Whisper and Coqui TTS" info = "This application uses [Indonesian Whisperer Medium](https://huggingface.co/cahya/whisper-medium-id) model" badge = "https://img.shields.io/badge/Powered%20by-Indonesian%20Whisperer-red" languages = { 'English': 'en', 'German': 'de', 'Spanish': 'es', 'French': 'fr', 'Portuguese': 'pt', 'Polish': 'pl', 'Dutch': 'nl', 'Swedish': 'sv', 'Italian': 'it', 'Finnish': 'fi', 'Ukrainian': 'uk', 'Greek': 'el', 'Czech': 'cs', 'Romanian': 'ro', 'Danish': 'da', 'Hungarian': 'hu', 'Croatian': 'hr', 'Bulgarian': 'bg', 'Lithuanian': 'lt', 'Slovak': 'sk', 'Latvian': 'lv', 'Slovenian': 'sl', 'Estonian': 'et', 'Maltese': 'mt' } device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") def transcribe(microphone, file_upload): warn_output = "" if (microphone is not None) and (file_upload is not None): warn_output = ( "WARNING: You've uploaded an audio file and used the microphone. " "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" ) elif (microphone is None) and (file_upload is None): return "ERROR: You have to either use the microphone or upload an audio file" file = microphone if microphone is not None else file_upload text = pipe(file)["text"] return warn_output + text LANGUAGES = list(CoquiTTS.langs.keys()) default_lang = "en" coquiTTS = CoquiTTS() def tts(language: str, audio_microphone: str, audio_file: str): print(f"### {datetime.now()} TTS", language, audio_file) transcription = transcribe(audio_microphone, audio_file) print(f"### {datetime.now()} transcribed:", transcription) translation = translate(transcription, language, "id") # return output with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: coquiTTS.get_tts(translation, fp, speaker={"language": language}) print(f"### {datetime.now()} fp.name:", fp.name) return transcription, translation, fp.name with gr.Blocks() as blocks: gr.Markdown("

" + title + "

") gr.Markdown(description) with gr.Row():# equal_height=False with gr.Column():# variant="panel" audio_microphone = gr.Audio(label="Microphone", source="microphone", type="filepath", optional=True) audio_upload = gr.Audio(label="Upload", source="upload", type="filepath", optional=True) print("upload:", audio_upload) radio = gr.Radio( label="Target Language", choices=LANGUAGES, value=default_lang ) language = gr.Dropdown([lang for lang in languages.keys()], label="Target Language", value="English") language = languages[language] with gr.Row(): # mobile_collapse=False submit = gr.Button("Submit", variant="primary") examples = gr.Examples(examples=["data/Jokowi - 2022.mp3", "data/Soekarno - 1963.mp3", "data/JFK.mp3"], label="Examples", inputs=[audio_upload]) with gr.Column(): text_source = gr.Textbox(label="Source Language") text_target = gr.Textbox(label="Target Language") audio = gr.Audio(label="Target Audio", interactive=False) memory = psutil.virtual_memory() gr.Markdown(info) system_status = info = f""" *Memory: {memory.total/(1024*1024*1024):.2f}GB, used: {memory.percent}%, available: {memory.available/(1024*1024*1024):.2f}GB* """ gr.Markdown(system_status) gr.Markdown("
" +f'visitors badge' +"
") # actions submit.click( tts, [language, audio_microphone, audio_upload], [text_source, text_target, audio], ) radio.change(lambda lang: CoquiTTS.langs[lang]["sentence"], radio) blocks.launch()