import gradio as gr from openai import OpenAI import os # Retrieve the access token from the environment variable ACCESS_TOKEN = os.getenv("HF_TOKEN") print("Access token loaded.") # Initialize the OpenAI client with the Hugging Face Inference API endpoint client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) print("OpenAI client initialized.") def respond( message, history: list[tuple[str, str]], system_message, custom_model, model, max_tokens, temperature, top_p, frequency_penalty, seed ): """ This function handles the chatbot response. It takes in: - message: the user's new message - history: the list of previous messages, each as a tuple (user_msg, assistant_msg) - system_message: the system prompt - custom_model: custom model path (if any) - model: selected model from featured models - max_tokens: the maximum number of tokens to generate in the response - temperature: sampling temperature - top_p: top-p (nucleus) sampling - frequency_penalty: penalize repeated tokens in the output - seed: a fixed seed for reproducibility; -1 will mean 'random' """ print(f"Received message: {message}") print(f"History: {history}") print(f"System message: {system_message}") print(f"Custom model: {custom_model}") print(f"Selected model: {model}") print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") # Convert seed to None if -1 (meaning random) if seed == -1: seed = None # Construct the messages array required by the API messages = [{"role": "system", "content": system_message}] # Add conversation history to the context for val in history: user_part = val[0] assistant_part = val[1] if user_part: messages.append({"role": "user", "content": user_part}) print(f"Added user message to context: {user_part}") if assistant_part: messages.append({"role": "assistant", "content": assistant_part}) print(f"Added assistant message to context: {assistant_part}") # Append the latest user message messages.append({"role": "user", "content": message}) # Start with an empty string to build the response as tokens stream in response = "" print("Sending request to OpenAI API.") # Determine which model to use if custom_model.strip(): selected_model = custom_model.strip() else: # Map the display names to actual model paths model_mapping = { "Llama 2 70B": "meta-llama/Llama-2-70b-chat-hf", "Mixtral 8x7B": "mistralai/Mixtral-8x7B-Instruct-v0.1", "Zephyr 7B": "HuggingFaceH4/zephyr-7b-beta", "OpenChat 3.5": "openchat/openchat-3.5-0106", } selected_model = model_mapping.get(model, "meta-llama/Llama-2-70b-chat-hf") # Make the streaming request to the HF Inference API via openai-like client for message_chunk in client.chat.completions.create( model=selected_model, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, frequency_penalty=frequency_penalty, seed=seed, messages=messages, ): # Extract the token text from the response chunk token_text = message_chunk.choices[0].delta.content print(f"Received token: {token_text}") response += token_text yield response print("Completed response generation.") # Create a Chatbot component with a specified height chatbot = gr.Chatbot(height=600) print("Chatbot interface created.") # Create the Gradio interface with tabs with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: with gr.Row(): with gr.Column(): # Basic Settings Tab with gr.Tab("Settings"): # System Message system_message = gr.Textbox( value="", label="System message", placeholder="Enter a system message to guide the model's behavior" ) # Model Selection Section with gr.Accordion("Featured Models", open=True): # Model Search model_search = gr.Textbox( label="Filter Models", placeholder="Search for a featured model...", lines=1 ) # Featured Models List models_list = [ "Llama 2 70B", "Mixtral 8x7B", "Zephyr 7B", "OpenChat 3.5" ] model = gr.Radio( label="Select a model", choices=models_list, value="Llama 2 70B" ) # Custom Model Input custom_model = gr.Textbox( label="Custom Model", info="Hugging Face model path (optional)", placeholder="meta-llama/Llama-2-70b-chat-hf" ) # Function to filter models def filter_models(search_term): filtered_models = [m for m in models_list if search_term.lower() in m.lower()] return gr.update(choices=filtered_models) # Update model list when search box is used model_search.change(filter_models, inputs=model_search, outputs=model) # Generation Parameters with gr.Row(): max_tokens = gr.Slider( minimum=1, maximum=4096, value=512, step=1, label="Max new tokens" ) temperature = gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" ) with gr.Row(): top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P" ) frequency_penalty = gr.Slider( minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty" ) with gr.Row(): seed = gr.Slider( minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)" ) # Information Tab with gr.Tab("Information"): # Featured Models Table with gr.Accordion("Featured Models", open=True): gr.HTML( """
Model Name | Size | Notes |
---|---|---|
Llama 2 70B | 70B | Meta's flagship model |
Mixtral 8x7B | 47B | Mistral AI's MoE model |
Zephyr 7B | 7B | Efficient fine-tuned model |
OpenChat 3.5 | 7B | High performance chat model |