notbulubula commited on
Commit
cd75d48
·
1 Parent(s): 1941536
Files changed (2) hide show
  1. .github/workflows/sync_to_hf_space.yml +20 -0
  2. app.py +20 -16
.github/workflows/sync_to_hf_space.yml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Sync to Hugging Face hub
2
+ on:
3
+ push:
4
+ branches: [main]
5
+
6
+ # to run this workflow manually from the Actions tab
7
+ workflow_dispatch:
8
+
9
+ jobs:
10
+ sync-to-hub:
11
+ runs-on: ubuntu-latest
12
+ steps:
13
+ - uses: actions/checkout@v3
14
+ with:
15
+ fetch-depth: 0
16
+ lfs: true
17
+ - name: Push to hub
18
+ env:
19
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
20
+ run: git push https://bulubula:[email protected]/spaces/bulubula/DashboardSafeScan main
app.py CHANGED
@@ -2,26 +2,30 @@ import streamlit as st
2
  import wandb
3
  import pandas as pd
4
 
5
- # Initialize W&B API
6
- api = wandb.Api()
 
 
 
 
7
 
8
  # Replace with your W&B entity and project name
9
- entity = "urbaniak-bruno-safescanai"
10
- project = "pytorch-intro"
11
 
12
- # Fetch all runs from the project
13
- runs = api.runs(f"{entity}/{project}")
14
 
15
- # Select a specific run (or create a dropdown for the user to select)
16
- run = runs[0] # Example: selecting the first run
17
 
18
- # Fetch the run data as a pandas DataFrame
19
- run_df = run.history()
20
 
21
- # Streamlit UI
22
- st.title("W&B Data in Streamlit")
23
- st.write(f"Displaying data for run: {run.name}")
24
- st.dataframe(run_df)
25
 
26
- # Example: Plotting a graph from the data
27
- st.line_chart(run_df[['epoch', 'accuracy']]) # Replace with appropriate columns
 
2
  import wandb
3
  import pandas as pd
4
 
5
+ # # Initialize W&B API
6
+ # api = wandb.Api()
7
+
8
+ # Show anything to see if works
9
+ st.write("Hello World")
10
+
11
 
12
  # Replace with your W&B entity and project name
13
+ # entity = "urbaniak-bruno-safescanai"
14
+ # project = "pytorch-intro"
15
 
16
+ # # Fetch all runs from the project
17
+ # runs = api.runs(f"{entity}/{project}")
18
 
19
+ # # Select a specific run (or create a dropdown for the user to select)
20
+ # run = runs[0] # Example: selecting the first run
21
 
22
+ # # Fetch the run data as a pandas DataFrame
23
+ # run_df = run.history()
24
 
25
+ # # Streamlit UI
26
+ # st.title("W&B Data in Streamlit")
27
+ # st.write(f"Displaying data for run: {run.name}")
28
+ # st.dataframe(run_df)
29
 
30
+ # # Example: Plotting a graph from the data
31
+ # st.line_chart(run_df[['epoch', 'accuracy']]) # Replace with appropriate columns