Spaces:
Runtime error
Runtime error
File size: 6,357 Bytes
593d914 105fcc0 593d914 b3d2735 105fcc0 593d914 437ef4e 593d914 6f3ebcb 7a47cbf 437ef4e 7a47cbf 593d914 105fcc0 593d914 105fcc0 593d914 177c91e 593d914 105fcc0 593d914 177c91e 593d914 b3d2735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
# -*- coding: utf-8 -*-
"""evaluate_gan_gradio.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1ckZU76dq3XWcpa5PpQF8a6qJwkTttg8v
# βοΈ Setup
"""
#!pip install gradio -q
#!pip install wget -q
#!pip install tensorflow_addons -q
"""## Fix random seeds"""
SEED = 11
import os
os.environ['PYTHONHASHSEED']=str(SEED)
import random
import numpy as np
import tensorflow as tf
random.seed(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)
"""## Imports"""
import gradio as gr
import wget
import pandas as pd
import shutil
"""## Download CelebA attributes
We'll use face images from the CelebA dataset, resized to 64x64.
"""
#Download labels from public github, they have been processed in a 0,1 csv file
os.makedirs("content/celeba_gan")
wget.download(url="https://github.com/buoi/conditional-face-GAN/blob/main/list_attr_celeba01.csv.zip?raw=true", out="content/celeba_gan/list_attr_celeba01.csv.zip")
shutil.unpack_archive(filename="content/celeba_gan/list_attr_celeba01.csv.zip", extract_dir="content/celeba_gan")
"""## Dataset preprocessing functions"""
# image utils functions
def conv_range(in_range=(-1,1), out_range=(0,255)):
""" Returns range conversion function"""
# compute means and spans once
in_mean, out_mean = np.mean(in_range), np.mean(out_range)
in_span, out_span = np.ptp(in_range), np.ptp(out_range)
# return function
def convert_img_range(in_img):
out_img = (in_img - in_mean) / in_span
out_img = out_img * out_span + out_mean
return out_img
return convert_img_range
def crop128(img):
#return img[:, 77:141, 57:121]# 64,64 center crop
return img[:, 45:173, 25:153] # 128,128 center crop
def resize64(img):
return tf.image.resize(img, (64,64), antialias=True, method='bilinear')
"""# π Evaluate model
## Load trained GAN
"""
#wandb artifacts
#sagan40 v18
#keras_metadata_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6Mjg3MzA4NTY=/5f09f68e9bb5b09efbc37ad76cdcdbb0"
#saved_model_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6Mjg3NDY1OTU=/2676cd88ef1866d6e572916e413a933e"
#variables_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6Mjg3NDY1OTU=/5cab1cb7351f0732ea137fb2d2e0d4ec"
#index_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6Mjg3NDY1OTU=/480b55762c3358f868b8cce53984736b"
#sagan10 v16
keras_metadata_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6MjYxMDQwMDE=/392d036bf91d3648eb5a2fa74c1eb716"
saved_model_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6MjYxMzQ0Mjg=/a5f8608efcc5dafbe780babcffbc79a9"
variables_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6MjYxMzQ0Mjg=/a62bf0c4bf7047c0a31df7d2cfdb54f0"
index_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6MjYxMzQ0Mjg=/de6539a7f0909d1dafa89571c7df43d1"
#download model
gan_path = "content/gan_model/"
try:
os.remove(gan_path+"keras_metadata.pb")
os.remove(gan_path+"saved_model.pb")
os.remove(gan_path+"variables/variables.data-00000-of-00001")
os.remove(gan_path+"variables/variables.index")
except FileNotFoundError:
pass
os.makedirs(gan_path,exist_ok =True)
os.makedirs(gan_path+"/variables",exist_ok =True)
import wget
wget.download(keras_metadata_url, gan_path+"keras_metadata.pb",)
wget.download(saved_model_url, gan_path+"saved_model.pb")
wget.download(variables_url, gan_path+"variables/variables.data-00000-of-00001")
wget.download(index_url, gan_path+"variables/variables.index")
gan = tf.keras.models.load_model(gan_path)
IMAGE_RANGE='11'
IMAGE_SIZE = gan.discriminator.input_shape[1]
if IMAGE_SIZE == 64:
IMAGE_SHAPE = (64,64,3)
elif IMAGE_SIZE == 218:
IMAGE_SHAPE = (218,178,3)
try:
LATENT_DIM = gan.generator.input_shape[0][1]
N_ATTRIBUTES = gan.generator.input_shape[1][1]
except TypeError:
LATENT_DIM = gan.generator.input_shape[1]
N_ATTRIBUTES =0
"""## πΎ Dataset"""
#@title Select Attributes {form-width: "50%", display-mode: "both" }
#NUMBER_OF_ATTRIBUTES = "10" #@param [0, 2, 10, 12, 40]
#N_ATTRIBUTES = int(NUMBER_OF_ATTRIBUTES)
IMAGE_RANGE = '11'
BATCH_SIZE = 64 #@param {type: "number"}
if N_ATTRIBUTES == 2:
LABELS = ["Male", "Smiling"]
elif N_ATTRIBUTES == 10:
LABELS = [
"Mouth_Slightly_Open", "Wearing_Lipstick", "High_Cheekbones", "Male", "Smiling",
"Heavy_Makeup", "Wavy_Hair", "Oval_Face", "Pointy_Nose", "Arched_Eyebrows"]
elif N_ATTRIBUTES == 12:
LABELS = ['Wearing_Lipstick','Mouth_Slightly_Open','Male','Smiling',
'High_Cheekbones','Heavy_Makeup','Attractive','Young',
'No_Beard','Black_Hair','Arched_Eyebrows','Big_Nose']
elif N_ATTRIBUTES == 40:
LABELS = [
'5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive',
'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose',
'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows',
'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair',
'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open',
'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin',
'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns',
'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings',
'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace',
'Wearing_Necktie', 'Young']
else:
LABELS = ["Male", "Smiling"]# just for dataset creation
# Take labels and a list of image locations in memory
df = pd.read_csv(r"content/celeba_gan/list_attr_celeba01.csv")
attr_list = df[LABELS].values.tolist()
def gen_img(attributes):
attr = np.zeros((1,N_ATTRIBUTES))
for a in attributes:
attr[0,int(a)] = 1
num_img = 1
random_latent_vectors = tf.random.normal(shape=(num_img, LATENT_DIM))
generated_images = gan.generator((random_latent_vectors, attr))
generated_images = (generated_images*0.5+0.5).numpy()
print(generated_images[0].shape)
return generated_images[0]
iface = gr.Interface(
gen_img,
gr.inputs.CheckboxGroup([LABELS[i] for i in range(N_ATTRIBUTES)], type='index'),
"image",
layout='unaligned'
)
iface.launch() |