import sys import os import streamlit as st import pandas as pd import pickle import datetime from PIL import Image # Add the root folder to the Python module search path sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) from src.utils import create_dataframe, process_data # Set Streamlit page configuration st.set_page_config( page_title="CAPE TOWN ANALYTICS", page_icon="📉", initial_sidebar_state="expanded", menu_items={ 'About': "# This is a header. This is an *extremely* cool app!" } ) # Define directory paths DIRPATH = os.path.dirname(os.path.realpath(__file__)) ml_components_1 = os.path.join(DIRPATH, "..", "assets", "ml_components", "ml_components_1.pkl") ml_components_2 = os.path.join(DIRPATH, "..", "assets", "ml_components", "ml_components_2.pkl") hist_df = os.path.join(DIRPATH, "..", "assets", "history.csv") image_path = os.path.join(DIRPATH, "..", "assets", "images", "justin-lim-JKjBsuKpatU-unsplash.jpg") # check if csv file exits def check_csv(csv_file, data): if os.path.isfile(csv_file): data.to_csv(csv_file, mode='a', header=False, encoding='utf-8', index=False) else: history = data.copy() history.to_csv(csv_file, encoding='utf-8', index=False) # Load pickle files def load_pickle(filename): with open(filename, 'rb') as file: data = pickle.load(file) return data ml_compos_1 = load_pickle(ml_components_1) ml_compos_2 = load_pickle(ml_components_2) # Extract components from ml_compos_2 categorical_pipeline = ml_compos_2['categorical_pipeline'] numerical_pipeliine = ml_compos_2['numerical_pipeline'] model = ml_compos_2['model'] # Extract columns from ml_compos_1 num_cols = ml_compos_1['num_cols'] cat_cols = ml_compos_1['cat_cols'] hol_level_list = ml_compos_1['Holiday_level'].tolist() hol_city_list = ml_compos_1['Holiday_city'].tolist() # Remove 'Not Holiday' from lists hol_city_list.remove('Not Holiday') hol_level_list.remove('Not Holiday') # Create a container for expanding content my_expander = st.container() holiday_level = 'Not Holiday' hol_city = 'Not Holiday' # st.sidebar.selectbox('Menu', ['About', 'Model']) # Expandable container for displaying content with my_expander: image = Image.open(image_path) st.image(image, caption=None, width=None, use_column_width=None, clamp=False, channels="RGB", output_format="auto") st.markdown(""" """, unsafe_allow_html=True) st.title('Demo Sales Forecasting :red[App]') st.sidebar.markdown(""" ## Demo App This app predict sales from the parameters on the interface """) # create a three column layout col1, col2, col3 = st.columns(3) # create a date input to receive date date = col1.date_input( "Enter the Date", datetime.date(2019, 7, 6)) # create a select box to select a family item_family = col2.selectbox('What is the category of item?', ml_compos_1['family']) # create a select box for store city store_city = col3.selectbox("Which city is the store located?", ml_compos_1['Store_city']) store_state = col1.selectbox("What state is the store located?", ml_compos_1['Store_state']) crude_price = col3.number_input('Price of Crude Oil', min_value=1.0, max_value=500.0, value=1.0) day_type = col2.selectbox("Type of Day?", ml_compos_1['Type_of_day'], index=2) # holiday_level = col3.radio("level of Holiday?", # ml_compos_1['Holiday_level']) colZ, colY = st.columns(2) store_type = colZ.radio("Type of store?", ml_compos_1['Store_type'][::-1]) st.write('', unsafe_allow_html=True) holi = colY.empty() with holi.expander(label='Holiday', expanded=False): if day_type == 'Additional Holiday' or day_type == 'Holiday' or day_type=='Transferred holiday': holiday_level = st.radio("level of Holiday?", hol_level_list)#.tolist().remove('Not Holiday')) hol_city = st.selectbox("In which city is the holiday?", hol_city_list)#.tolist().remove('Not Holiday')) else: st.markdown('Not Holiday') colA, colB, colC = st.columns(3) store_number = colA.slider("Select the Store number ", min_value=1, max_value=54, value=1) store_cluster = colB.slider("Select the Store Cluster ", min_value=1, max_value=17, value=1) item_onpromo = colC.slider("Number of items onpromo ", min_value=0, max_value=800, value=1) button = st.button(label='Predict', use_container_width=True, type='primary') raw_data = [date, store_number, item_family, item_onpromo, crude_price, holiday_level, hol_city, day_type, store_city, store_state, store_type, store_cluster] data = create_dataframe(raw_data) processed_data = process_data(data, categorical_pipeline, numerical_pipeliine, cat_cols, num_cols) if button: st.balloons() st.metric('Predicted Sale', value=model.predict(processed_data)) # predictions = model.predict(process_data) csv_file = hist_df check_csv(csv_file, data) history = pd.read_csv(csv_file) with st.expander('Download Input History'): # new_history = history.iloc[1:] st.dataframe(history) st.download_button('Download Data', history.to_csv(index=False), file_name='input_history.csv')