Spaces:
Running
Running
breezedeus
commited on
Commit
·
66658a5
1
Parent(s):
7aa3bf4
transfer from streamlit to gradio
Browse files- README.md +5 -3
- app.py +148 -77
- requirements.txt +188 -98
- streamlit_app.py +183 -0
README.md
CHANGED
@@ -1,14 +1,16 @@
|
|
1 |
---
|
2 |
-
title: CnOCR
|
3 |
emoji: 🅞🅒🅡
|
4 |
colorFrom: indigo
|
5 |
colorTo: yellow
|
6 |
-
sdk:
|
|
|
7 |
app_file: app.py
|
8 |
pinned: false
|
|
|
9 |
---
|
10 |
|
11 |
-
# CnOCR
|
12 |
|
13 |
[**CnOCR**](https://github.com/breezedeus/cnocr) is an **Optical Character Recognition (OCR)** toolkit for **Python 3**. It supports recognition of common characters in **English and numbers**, **Simplified Chinese**, **Traditional Chinese** (some models), and **vertical text** recognition. It comes with [**20+ well-trained models**](https://cnocr.readthedocs.io/zh/latest/models/) for different application scenarios and can be used directly after installation. Also, CnOCR provides simple training [commands](https://cnocr.readthedocs.io/zh/latest/train/) for users to train their own models. Welcome to join the WeChat contact group.
|
14 |
|
|
|
1 |
---
|
2 |
+
title: CnOCR Demo
|
3 |
emoji: 🅞🅒🅡
|
4 |
colorFrom: indigo
|
5 |
colorTo: yellow
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.44.4
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
# CnOCR (Cn-OCR)
|
14 |
|
15 |
[**CnOCR**](https://github.com/breezedeus/cnocr) is an **Optical Character Recognition (OCR)** toolkit for **Python 3**. It supports recognition of common characters in **English and numbers**, **Simplified Chinese**, **Traditional Chinese** (some models), and **vertical text** recognition. It comes with [**20+ well-trained models**](https://cnocr.readthedocs.io/zh/latest/models/) for different application scenarios and can be used directly after installation. Also, CnOCR provides simple training [commands](https://cnocr.readthedocs.io/zh/latest/train/) for users to train their own models. Welcome to join the WeChat contact group.
|
16 |
|
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# coding: utf-8
|
2 |
-
# Copyright (C)
|
3 |
# Licensed to the Apache Software Foundation (ASF) under one
|
4 |
# or more contributor license agreements. See the NOTICE file
|
5 |
# distributed with this work for additional information
|
@@ -18,12 +18,10 @@
|
|
18 |
# under the License.
|
19 |
|
20 |
import os
|
21 |
-
from collections import OrderedDict
|
22 |
|
|
|
23 |
import cv2
|
24 |
import numpy as np
|
25 |
-
from PIL import Image
|
26 |
-
import streamlit as st
|
27 |
from cnstd.utils import pil_to_numpy, imsave
|
28 |
|
29 |
from cnocr import CnOcr, DET_AVAILABLE_MODELS, REC_AVAILABLE_MODELS
|
@@ -31,7 +29,6 @@ from cnocr.utils import set_logger, draw_ocr_results, download
|
|
31 |
|
32 |
|
33 |
logger = set_logger()
|
34 |
-
st.set_page_config(layout="wide")
|
35 |
|
36 |
|
37 |
def plot_for_debugging(rotated_img, one_out, box_score_thresh, crop_ncols, prefix_fp):
|
@@ -41,6 +38,8 @@ def plot_for_debugging(rotated_img, one_out, box_score_thresh, crop_ncols, prefi
|
|
41 |
rotated_img = rotated_img.copy()
|
42 |
crops = [info['cropped_img'] for info in one_out]
|
43 |
print('%d boxes are found' % len(crops))
|
|
|
|
|
44 |
ncols = crop_ncols
|
45 |
nrows = math.ceil(len(crops) / ncols)
|
46 |
fig, ax = plt.subplots(nrows=nrows, ncols=ncols)
|
@@ -64,10 +63,9 @@ def plot_for_debugging(rotated_img, one_out, box_score_thresh, crop_ncols, prefi
|
|
64 |
print('boxes results are save to file %s' % result_fp)
|
65 |
|
66 |
|
67 |
-
@st.cache_resource
|
68 |
def get_ocr_model(det_model_name, rec_model_name, det_more_configs):
|
69 |
-
det_model_name, det_model_backend = det_model_name
|
70 |
-
rec_model_name, rec_model_backend = rec_model_name
|
71 |
return CnOcr(
|
72 |
det_model_name=det_model_name,
|
73 |
det_model_backend=det_model_backend,
|
@@ -78,31 +76,33 @@ def get_ocr_model(det_model_name, rec_model_name, det_more_configs):
|
|
78 |
|
79 |
|
80 |
def visualize_naive_result(img, det_model_name, std_out, box_score_thresh):
|
|
|
|
|
|
|
81 |
img = pil_to_numpy(img).transpose((1, 2, 0)).astype(np.uint8)
|
82 |
|
83 |
-
plot_for_debugging(img, std_out, box_score_thresh, 2, './streamlit-app')
|
84 |
-
|
85 |
-
if det_model_name == '
|
86 |
-
|
87 |
-
cols = st.columns([1, 7, 1])
|
88 |
-
cols[1].image('./streamlit-app-result.png')
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
cols = st.columns([1, 7, 1])
|
92 |
-
cols[1].image('./streamlit-app-crops.png')
|
93 |
-
|
94 |
-
_visualize_ocr(std_out)
|
95 |
|
96 |
|
97 |
def _visualize_ocr(ocr_outs):
|
98 |
-
|
99 |
-
|
100 |
-
ocr_res
|
101 |
for out in ocr_outs:
|
102 |
# cropped_img = out['cropped_img'] # 检测出的文本框
|
103 |
-
ocr_res
|
104 |
-
|
105 |
-
st.table(ocr_res)
|
106 |
|
107 |
|
108 |
def visualize_result(img, ocr_outs):
|
@@ -113,55 +113,27 @@ def visualize_result(img, ocr_outs):
|
|
113 |
os.makedirs(os.path.dirname(font_path), exist_ok=True)
|
114 |
download(url, path=font_path, overwrite=True)
|
115 |
draw_ocr_results(img, ocr_outs, out_draw_fp, font_path)
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
def
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
rec_model_name = st.sidebar.selectbox('选择识别模型', all_models, index=idx)
|
132 |
-
|
133 |
-
st.sidebar.subheader('检测参数')
|
134 |
-
rotated_bbox = st.sidebar.checkbox('是否检测带角度文本框', value=True)
|
135 |
-
use_angle_clf = st.sidebar.checkbox('是否使用角度预测模型校正文本框', value=False)
|
136 |
-
new_size = st.sidebar.slider(
|
137 |
-
'resize 后图片(长边)大小', min_value=124, max_value=4096, value=768
|
138 |
-
)
|
139 |
-
box_score_thresh = st.sidebar.slider(
|
140 |
-
'得分阈值(低于阈值的结果会被过滤掉)', min_value=0.05, max_value=0.95, value=0.3
|
141 |
-
)
|
142 |
-
min_box_size = st.sidebar.slider(
|
143 |
-
'框大小阈值(更小的文本框会被过滤掉)', min_value=4, max_value=50, value=10
|
144 |
-
)
|
145 |
-
# std = get_std_model(det_model_name, rotated_bbox, use_angle_clf)
|
146 |
-
|
147 |
-
# st.sidebar.markdown("""---""")
|
148 |
-
# st.sidebar.header('CnOcr 设置')
|
149 |
det_more_configs = dict(rotated_bbox=rotated_bbox, use_angle_clf=use_angle_clf)
|
150 |
ocr = get_ocr_model(det_model_name, rec_model_name, det_more_configs)
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
'作者:[breezedeus](https://www.breezedeus.com), [Github](https://github.com/breezedeus) 。')
|
156 |
-
st.markdown('')
|
157 |
-
st.subheader('选择待检测图片')
|
158 |
-
content_file = st.file_uploader('', type=["png", "jpg", "jpeg", "webp"])
|
159 |
-
if content_file is None:
|
160 |
-
st.stop()
|
161 |
-
|
162 |
-
try:
|
163 |
-
img = Image.open(content_file).convert('RGB')
|
164 |
-
|
165 |
ocr_out = ocr.ocr(
|
166 |
img,
|
167 |
return_cropped_image=True,
|
@@ -170,13 +142,112 @@ def main():
|
|
170 |
box_score_thresh=box_score_thresh,
|
171 |
min_box_size=min_box_size,
|
172 |
)
|
173 |
-
if det_model_name[0] == 'naive_det':
|
174 |
-
visualize_naive_result(img, det_model_name[0], ocr_out, box_score_thresh)
|
175 |
-
else:
|
176 |
-
visualize_result(img, ocr_out)
|
177 |
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
|
182 |
if __name__ == '__main__':
|
|
|
1 |
# coding: utf-8
|
2 |
+
# Copyright (C) 2023, [Breezedeus](https://github.com/breezedeus).
|
3 |
# Licensed to the Apache Software Foundation (ASF) under one
|
4 |
# or more contributor license agreements. See the NOTICE file
|
5 |
# distributed with this work for additional information
|
|
|
18 |
# under the License.
|
19 |
|
20 |
import os
|
|
|
21 |
|
22 |
+
import gradio as gr
|
23 |
import cv2
|
24 |
import numpy as np
|
|
|
|
|
25 |
from cnstd.utils import pil_to_numpy, imsave
|
26 |
|
27 |
from cnocr import CnOcr, DET_AVAILABLE_MODELS, REC_AVAILABLE_MODELS
|
|
|
29 |
|
30 |
|
31 |
logger = set_logger()
|
|
|
32 |
|
33 |
|
34 |
def plot_for_debugging(rotated_img, one_out, box_score_thresh, crop_ncols, prefix_fp):
|
|
|
38 |
rotated_img = rotated_img.copy()
|
39 |
crops = [info['cropped_img'] for info in one_out]
|
40 |
print('%d boxes are found' % len(crops))
|
41 |
+
if len(crops) < 1:
|
42 |
+
return
|
43 |
ncols = crop_ncols
|
44 |
nrows = math.ceil(len(crops) / ncols)
|
45 |
fig, ax = plt.subplots(nrows=nrows, ncols=ncols)
|
|
|
63 |
print('boxes results are save to file %s' % result_fp)
|
64 |
|
65 |
|
|
|
66 |
def get_ocr_model(det_model_name, rec_model_name, det_more_configs):
|
67 |
+
det_model_name, det_model_backend = det_model_name.split('::')
|
68 |
+
rec_model_name, rec_model_backend = rec_model_name.split('::')
|
69 |
return CnOcr(
|
70 |
det_model_name=det_model_name,
|
71 |
det_model_backend=det_model_backend,
|
|
|
76 |
|
77 |
|
78 |
def visualize_naive_result(img, det_model_name, std_out, box_score_thresh):
|
79 |
+
if len(std_out) < 1:
|
80 |
+
# gr.Warning(f'未检测到文本!')
|
81 |
+
return []
|
82 |
img = pil_to_numpy(img).transpose((1, 2, 0)).astype(np.uint8)
|
83 |
|
84 |
+
# plot_for_debugging(img, std_out, box_score_thresh, 2, './streamlit-app')
|
85 |
+
# gr.Markdown('## Detection Result')
|
86 |
+
# if det_model_name == 'naive_det':
|
87 |
+
# gr.Warning('⚠️ Warning: "naive_det" 检测模型不返回文本框位置!')
|
88 |
+
# cols = st.columns([1, 7, 1])
|
89 |
+
# cols[1].image('./streamlit-app-result.png')
|
90 |
+
#
|
91 |
+
# st.subheader('Recognition Result')
|
92 |
+
# cols = st.columns([1, 7, 1])
|
93 |
+
# cols[1].image('./streamlit-app-crops.png')
|
94 |
|
95 |
+
return _visualize_ocr(std_out)
|
|
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
def _visualize_ocr(ocr_outs):
|
99 |
+
if len(ocr_outs) < 1:
|
100 |
+
return
|
101 |
+
ocr_res = []
|
102 |
for out in ocr_outs:
|
103 |
# cropped_img = out['cropped_img'] # 检测出的文本框
|
104 |
+
ocr_res.append([out['score'], out['text']])
|
105 |
+
return ocr_res
|
|
|
106 |
|
107 |
|
108 |
def visualize_result(img, ocr_outs):
|
|
|
113 |
os.makedirs(os.path.dirname(font_path), exist_ok=True)
|
114 |
download(url, path=font_path, overwrite=True)
|
115 |
draw_ocr_results(img, ocr_outs, out_draw_fp, font_path)
|
116 |
+
return out_draw_fp
|
117 |
+
|
118 |
+
|
119 |
+
def recognize(
|
120 |
+
det_model_name,
|
121 |
+
is_single_line,
|
122 |
+
rec_model_name,
|
123 |
+
rotated_bbox,
|
124 |
+
use_angle_clf,
|
125 |
+
new_size,
|
126 |
+
box_score_thresh,
|
127 |
+
min_box_size,
|
128 |
+
image_file,
|
129 |
+
):
|
130 |
+
img = image_file.convert('RGB')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
det_more_configs = dict(rotated_bbox=rotated_bbox, use_angle_clf=use_angle_clf)
|
132 |
ocr = get_ocr_model(det_model_name, rec_model_name, det_more_configs)
|
133 |
|
134 |
+
if is_single_line:
|
135 |
+
ocr_out = [ocr.ocr_for_single_line(np.array(img))]
|
136 |
+
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
ocr_out = ocr.ocr(
|
138 |
img,
|
139 |
return_cropped_image=True,
|
|
|
142 |
box_score_thresh=box_score_thresh,
|
143 |
min_box_size=min_box_size,
|
144 |
)
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
det_model_name, det_model_backend = det_model_name.split('::')
|
147 |
+
if is_single_line or det_model_name == 'naive_det':
|
148 |
+
out_texts = visualize_naive_result(
|
149 |
+
img, det_model_name, ocr_out, box_score_thresh
|
150 |
+
)
|
151 |
+
if is_single_line:
|
152 |
+
return [
|
153 |
+
gr.update(visible=False),
|
154 |
+
gr.update(visible=False),
|
155 |
+
gr.update(value=out_texts, visible=True),
|
156 |
+
]
|
157 |
+
return [
|
158 |
+
gr.update(visible=False),
|
159 |
+
gr.update(visible=True),
|
160 |
+
gr.update(value=out_texts, visible=True),
|
161 |
+
]
|
162 |
+
else:
|
163 |
+
out_img_path = visualize_result(img, ocr_out)
|
164 |
+
return [
|
165 |
+
gr.update(value=out_img_path, visible=True),
|
166 |
+
gr.update(visible=False),
|
167 |
+
gr.update(visible=False),
|
168 |
+
]
|
169 |
+
|
170 |
+
|
171 |
+
def main():
|
172 |
+
det_models = list(DET_AVAILABLE_MODELS.all_models())
|
173 |
+
det_models.append(('naive_det', 'onnx'))
|
174 |
+
det_models.sort()
|
175 |
+
det_models = [f'{m}::{b}' for m, b in det_models]
|
176 |
+
|
177 |
+
all_models = list(REC_AVAILABLE_MODELS.all_models())
|
178 |
+
all_models.sort()
|
179 |
+
all_models = [f'{m}::{b}' for m, b in all_models]
|
180 |
+
|
181 |
+
title = '开源Python OCR工具:'
|
182 |
+
desc = (
|
183 |
+
'<p style="text-align: center">详细说明参见:<a href="https://github.com/breezedeus/CnOCR" target="_blank">Github</a>;'
|
184 |
+
'<a href="https://cnocr.readthedocs.io" target="_blank">在线文档</a>;'
|
185 |
+
'欢迎加入 <a href="https://www.breezedeus.com/join-group" target="_blank">交流群</a>;'
|
186 |
+
'作者:<a href="https://www.breezedeus.com" target="_blank">Breezedeus</a> ,'
|
187 |
+
'<a href="https://github.com/breezedeus" target="_blank">Github</a> 。</p>'
|
188 |
+
)
|
189 |
+
|
190 |
+
with gr.Blocks() as demo:
|
191 |
+
gr.Markdown(
|
192 |
+
f'<h1 style="text-align: center; margin-bottom: 1rem;">{title} <a href="https://github.com/breezedeus/cnocr" target="_blank">CnOCR</a></h1>'
|
193 |
+
)
|
194 |
+
gr.Markdown(desc)
|
195 |
+
with gr.Row(equal_height=False):
|
196 |
+
with gr.Column(min_width=200, variant='panel', scale=1):
|
197 |
+
gr.Markdown('### 模型设置')
|
198 |
+
det_model_name = gr.Dropdown(
|
199 |
+
label='选择检测模型', choices=det_models, value='ch_PP-OCRv3_det::onnx',
|
200 |
+
)
|
201 |
+
is_single_line = gr.Checkbox(label='单行文字模式(不使用检测模型)', value=False)
|
202 |
+
|
203 |
+
rec_model_name = gr.Dropdown(
|
204 |
+
label='选择识别模型',
|
205 |
+
choices=all_models,
|
206 |
+
value='densenet_lite_136-fc::onnx',
|
207 |
+
)
|
208 |
+
|
209 |
+
gr.Markdown('### 检测参数')
|
210 |
+
rotated_bbox = gr.Checkbox(label='检测带角度文本框', value=True)
|
211 |
+
use_angle_clf = gr.Checkbox(label='使用角度预测模型校正文本框', value=False)
|
212 |
+
new_size = gr.Slider(
|
213 |
+
label='resize 后图片(长边)大小', minimum=124, maximum=4096, value=768
|
214 |
+
)
|
215 |
+
box_score_thresh = gr.Slider(
|
216 |
+
label='得分阈值(低于阈值的结果会被过滤掉)', minimum=0.05, maximum=0.95, value=0.3
|
217 |
+
)
|
218 |
+
min_box_size = gr.Slider(
|
219 |
+
label='框大小阈值(更小的文本框会被过滤掉)', minimum=4, maximum=50, value=10
|
220 |
+
)
|
221 |
+
|
222 |
+
with gr.Column(scale=3, variant='compact'):
|
223 |
+
gr.Markdown('### 选择待检测图片')
|
224 |
+
image_file = gr.Image(label='', type="pil", image_mode='RGB')
|
225 |
+
sub_btn = gr.Button("Submit", variant="primary")
|
226 |
+
out_image = gr.Image(label='识别结果', interactive=False, visible=False)
|
227 |
+
naive_warn = gr.Markdown(
|
228 |
+
'**⚠️ Warning**: "naive_det" 检测模型不返回文本框位置!', visible=False
|
229 |
+
)
|
230 |
+
out_texts = gr.Dataframe(
|
231 |
+
headers=['得分', '文本'], label='识别结果', interactive=False, visible=False
|
232 |
+
)
|
233 |
+
sub_btn.click(
|
234 |
+
recognize,
|
235 |
+
inputs=[
|
236 |
+
det_model_name,
|
237 |
+
is_single_line,
|
238 |
+
rec_model_name,
|
239 |
+
rotated_bbox,
|
240 |
+
use_angle_clf,
|
241 |
+
new_size,
|
242 |
+
box_score_thresh,
|
243 |
+
min_box_size,
|
244 |
+
image_file,
|
245 |
+
],
|
246 |
+
outputs=[out_image, naive_warn, out_texts],
|
247 |
+
)
|
248 |
+
|
249 |
+
demo.queue(concurrency_count=4)
|
250 |
+
demo.launch()
|
251 |
|
252 |
|
253 |
if __name__ == '__main__':
|
requirements.txt
CHANGED
@@ -1,155 +1,237 @@
|
|
1 |
#
|
2 |
-
# This file is autogenerated by pip-compile with
|
3 |
-
#
|
4 |
#
|
5 |
-
# pip-compile --output-file=requirements.txt requirements.in
|
6 |
#
|
7 |
-
--index-url https://pypi.doubanio.com/simple
|
8 |
--extra-index-url https://pypi.org/simple
|
9 |
|
10 |
-
|
11 |
-
# via tensorboard
|
12 |
-
aiohttp==3.7.4.post0
|
13 |
# via fsspec
|
14 |
-
|
15 |
# via aiohttp
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# via aiohttp
|
18 |
-
|
19 |
-
# via
|
20 |
-
|
21 |
-
#
|
22 |
-
|
23 |
# via
|
24 |
# aiohttp
|
25 |
# requests
|
26 |
-
click==8.
|
27 |
# via
|
28 |
# -r requirements.in
|
29 |
# cnstd
|
30 |
-
|
|
|
31 |
# via -r requirements.in
|
|
|
|
|
|
|
|
|
32 |
cycler==0.11.0
|
33 |
# via matplotlib
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# via onnxruntime
|
36 |
-
fonttools==4.
|
37 |
# via matplotlib
|
38 |
-
|
39 |
-
# via
|
40 |
-
|
|
|
|
|
41 |
# via
|
42 |
-
#
|
43 |
-
#
|
44 |
-
|
45 |
-
# via
|
46 |
-
|
47 |
-
# via
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
# via
|
50 |
# requests
|
51 |
# yarl
|
52 |
-
|
|
|
|
|
53 |
# via matplotlib
|
54 |
-
|
55 |
-
# via
|
56 |
-
|
57 |
-
# via
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# via
|
60 |
# aiohttp
|
61 |
# yarl
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
# via
|
64 |
# -r requirements.in
|
|
|
65 |
# cnstd
|
|
|
|
|
66 |
# matplotlib
|
67 |
# onnx
|
68 |
# onnxruntime
|
69 |
# opencv-python
|
|
|
|
|
70 |
# pytorch-lightning
|
|
|
|
|
|
|
|
|
71 |
# scipy
|
72 |
-
#
|
|
|
|
|
73 |
# torchmetrics
|
74 |
# torchvision
|
75 |
-
|
76 |
-
# via requests-oauthlib
|
77 |
-
onnx==1.13.0
|
78 |
# via
|
79 |
# -r requirements.in
|
80 |
# cnstd
|
81 |
-
onnxruntime==1.
|
82 |
# via
|
83 |
# -r requirements.in
|
84 |
# cnstd
|
85 |
-
opencv-python==4.
|
86 |
# via cnstd
|
87 |
-
|
|
|
|
|
|
|
|
|
88 |
# via
|
|
|
|
|
89 |
# matplotlib
|
|
|
90 |
# pytorch-lightning
|
|
|
91 |
# torchmetrics
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
# via
|
94 |
# -r requirements.in
|
95 |
# cnstd
|
|
|
96 |
# matplotlib
|
|
|
97 |
# torchvision
|
98 |
polygon3==3.0.9.1
|
99 |
# via cnstd
|
100 |
-
protobuf
|
101 |
# via
|
102 |
# onnx
|
103 |
# onnxruntime
|
104 |
-
#
|
105 |
-
|
106 |
-
# via
|
107 |
-
|
108 |
-
# rsa
|
109 |
-
pyasn1-modules==0.2.8
|
110 |
-
# via google-auth
|
111 |
-
pyclipper==1.3.0.post3
|
112 |
# via cnstd
|
113 |
-
|
114 |
-
# via
|
115 |
-
|
116 |
# via
|
117 |
# matplotlib
|
118 |
-
#
|
119 |
-
|
120 |
-
# via matplotlib
|
121 |
-
pytorch-lightning==1.6.3
|
122 |
# via
|
123 |
# -r requirements.in
|
124 |
# cnstd
|
125 |
-
|
126 |
-
# via
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
# via
|
129 |
# fsspec
|
130 |
-
#
|
131 |
-
#
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
# via cnstd
|
138 |
-
|
|
|
|
|
|
|
|
|
139 |
# via cnstd
|
140 |
-
six==1.
|
141 |
# via
|
142 |
-
#
|
143 |
-
# google-auth
|
144 |
-
# grpcio
|
145 |
-
# protobuf
|
146 |
# python-dateutil
|
147 |
-
|
148 |
-
# via
|
149 |
-
|
150 |
-
# via
|
151 |
-
|
152 |
-
#
|
|
|
|
|
|
|
|
|
153 |
torch==2.0.1
|
154 |
# via
|
155 |
# -r requirements.in
|
@@ -157,37 +239,45 @@ torch==2.0.1
|
|
157 |
# pytorch-lightning
|
158 |
# torchmetrics
|
159 |
# torchvision
|
160 |
-
torchmetrics==0.11.
|
161 |
-
# via
|
|
|
|
|
162 |
torchvision==0.15.2
|
163 |
# via
|
164 |
# -r requirements.in
|
165 |
# cnstd
|
166 |
-
tqdm==4.
|
167 |
# via
|
168 |
# -r requirements.in
|
169 |
# cnstd
|
|
|
170 |
# pytorch-lightning
|
171 |
-
typing-extensions==4.
|
172 |
# via
|
173 |
-
#
|
|
|
174 |
# onnx
|
175 |
# pytorch-lightning
|
|
|
176 |
# torch
|
177 |
-
|
|
|
|
|
|
|
178 |
# via cnstd
|
179 |
-
urllib3==
|
180 |
-
# via
|
181 |
-
|
182 |
-
#
|
183 |
-
|
184 |
-
# via
|
185 |
-
yarl==1.
|
186 |
# via aiohttp
|
|
|
|
|
|
|
|
|
187 |
|
188 |
# The following packages are considered to be unsafe in a requirements file:
|
189 |
# setuptools
|
190 |
-
|
191 |
-
# for streamlit.io demo
|
192 |
-
cnocr==2.2.2.3
|
193 |
-
streamlit
|
|
|
1 |
#
|
2 |
+
# This file is autogenerated by pip-compile with Python 3.9
|
3 |
+
# by the following command:
|
4 |
#
|
5 |
+
# pip-compile --extra-index-url=https://pypi.tuna.tsinghua.edu.cn/simple --index-url=https://mirrors.aliyun.com/pypi/simple --output-file=requirements.txt requirements.in
|
6 |
#
|
|
|
7 |
--extra-index-url https://pypi.org/simple
|
8 |
|
9 |
+
aiohttp==3.8.4
|
|
|
|
|
10 |
# via fsspec
|
11 |
+
aiosignal==1.3.1
|
12 |
# via aiohttp
|
13 |
+
albumentations==1.3.1
|
14 |
+
# via -r requirements.in
|
15 |
+
appdirs==1.4.4
|
16 |
+
# via wandb
|
17 |
+
async-timeout==4.0.2
|
18 |
+
# via aiohttp
|
19 |
+
attrs==23.1.0
|
20 |
# via aiohttp
|
21 |
+
certifi==2023.5.7
|
22 |
+
# via
|
23 |
+
# requests
|
24 |
+
# sentry-sdk
|
25 |
+
charset-normalizer==3.1.0
|
26 |
# via
|
27 |
# aiohttp
|
28 |
# requests
|
29 |
+
click==8.1.3
|
30 |
# via
|
31 |
# -r requirements.in
|
32 |
# cnstd
|
33 |
+
# wandb
|
34 |
+
cnstd>=1.2.3.4
|
35 |
# via -r requirements.in
|
36 |
+
coloredlogs==15.0.1
|
37 |
+
# via onnxruntime
|
38 |
+
contourpy==1.1.0
|
39 |
+
# via matplotlib
|
40 |
cycler==0.11.0
|
41 |
# via matplotlib
|
42 |
+
docker-pycreds==0.4.0
|
43 |
+
# via wandb
|
44 |
+
filelock==3.12.2
|
45 |
+
# via
|
46 |
+
# huggingface-hub
|
47 |
+
# torch
|
48 |
+
flatbuffers==23.5.26
|
49 |
# via onnxruntime
|
50 |
+
fonttools==4.40.0
|
51 |
# via matplotlib
|
52 |
+
frozenlist==1.3.3
|
53 |
+
# via
|
54 |
+
# aiohttp
|
55 |
+
# aiosignal
|
56 |
+
fsspec[http]==2023.6.0
|
57 |
# via
|
58 |
+
# huggingface-hub
|
59 |
+
# pytorch-lightning
|
60 |
+
gitdb==4.0.10
|
61 |
+
# via gitpython
|
62 |
+
gitpython==3.1.34
|
63 |
+
# via wandb
|
64 |
+
huggingface-hub==0.15.1
|
65 |
+
# via cnstd
|
66 |
+
humanfriendly==10.0
|
67 |
+
# via coloredlogs
|
68 |
+
idna==3.4
|
69 |
# via
|
70 |
# requests
|
71 |
# yarl
|
72 |
+
imageio==2.31.3
|
73 |
+
# via scikit-image
|
74 |
+
importlib-resources==5.12.0
|
75 |
# via matplotlib
|
76 |
+
jinja2==3.1.2
|
77 |
+
# via torch
|
78 |
+
joblib==1.3.2
|
79 |
+
# via scikit-learn
|
80 |
+
kiwisolver==1.4.4
|
81 |
+
# via matplotlib
|
82 |
+
lazy-loader==0.3
|
83 |
+
# via scikit-image
|
84 |
+
lightning-utilities==0.9.0
|
85 |
+
# via pytorch-lightning
|
86 |
+
markupsafe==2.1.3
|
87 |
+
# via jinja2
|
88 |
+
matplotlib==3.7.1
|
89 |
+
# via
|
90 |
+
# cnstd
|
91 |
+
# seaborn
|
92 |
+
mpmath==1.3.0
|
93 |
+
# via sympy
|
94 |
+
multidict==6.0.4
|
95 |
# via
|
96 |
# aiohttp
|
97 |
# yarl
|
98 |
+
networkx==3.1
|
99 |
+
# via
|
100 |
+
# scikit-image
|
101 |
+
# torch
|
102 |
+
numpy==1.25.0
|
103 |
# via
|
104 |
# -r requirements.in
|
105 |
+
# albumentations
|
106 |
# cnstd
|
107 |
+
# contourpy
|
108 |
+
# imageio
|
109 |
# matplotlib
|
110 |
# onnx
|
111 |
# onnxruntime
|
112 |
# opencv-python
|
113 |
+
# opencv-python-headless
|
114 |
+
# pandas
|
115 |
# pytorch-lightning
|
116 |
+
# pywavelets
|
117 |
+
# qudida
|
118 |
+
# scikit-image
|
119 |
+
# scikit-learn
|
120 |
# scipy
|
121 |
+
# seaborn
|
122 |
+
# shapely
|
123 |
+
# tifffile
|
124 |
# torchmetrics
|
125 |
# torchvision
|
126 |
+
onnx==1.14.0
|
|
|
|
|
127 |
# via
|
128 |
# -r requirements.in
|
129 |
# cnstd
|
130 |
+
onnxruntime==1.15.1
|
131 |
# via
|
132 |
# -r requirements.in
|
133 |
# cnstd
|
134 |
+
opencv-python==4.7.0.72
|
135 |
# via cnstd
|
136 |
+
opencv-python-headless==4.8.0.76
|
137 |
+
# via
|
138 |
+
# albumentations
|
139 |
+
# qudida
|
140 |
+
packaging==23.1
|
141 |
# via
|
142 |
+
# huggingface-hub
|
143 |
+
# lightning-utilities
|
144 |
# matplotlib
|
145 |
+
# onnxruntime
|
146 |
# pytorch-lightning
|
147 |
+
# scikit-image
|
148 |
# torchmetrics
|
149 |
+
pandas==2.0.3
|
150 |
+
# via
|
151 |
+
# cnstd
|
152 |
+
# seaborn
|
153 |
+
pathtools==0.1.2
|
154 |
+
# via wandb
|
155 |
+
pillow==9.5.0
|
156 |
# via
|
157 |
# -r requirements.in
|
158 |
# cnstd
|
159 |
+
# imageio
|
160 |
# matplotlib
|
161 |
+
# scikit-image
|
162 |
# torchvision
|
163 |
polygon3==3.0.9.1
|
164 |
# via cnstd
|
165 |
+
protobuf==4.23.3
|
166 |
# via
|
167 |
# onnx
|
168 |
# onnxruntime
|
169 |
+
# wandb
|
170 |
+
psutil==5.9.5
|
171 |
+
# via wandb
|
172 |
+
pyclipper==1.3.0.post4
|
|
|
|
|
|
|
|
|
173 |
# via cnstd
|
174 |
+
pyparsing==3.1.0
|
175 |
+
# via matplotlib
|
176 |
+
python-dateutil==2.8.2
|
177 |
# via
|
178 |
# matplotlib
|
179 |
+
# pandas
|
180 |
+
pytorch-lightning==2.0.8
|
|
|
|
|
181 |
# via
|
182 |
# -r requirements.in
|
183 |
# cnstd
|
184 |
+
pytz==2023.3
|
185 |
+
# via pandas
|
186 |
+
pywavelets==1.4.1
|
187 |
+
# via scikit-image
|
188 |
+
pyyaml==6.0
|
189 |
+
# via
|
190 |
+
# albumentations
|
191 |
+
# cnstd
|
192 |
+
# huggingface-hub
|
193 |
+
# pytorch-lightning
|
194 |
+
# wandb
|
195 |
+
qudida==0.0.4
|
196 |
+
# via albumentations
|
197 |
+
requests==2.31.0
|
198 |
# via
|
199 |
# fsspec
|
200 |
+
# huggingface-hub
|
201 |
+
# torchvision
|
202 |
+
# wandb
|
203 |
+
scikit-image==0.21.0
|
204 |
+
# via albumentations
|
205 |
+
scikit-learn==1.3.0
|
206 |
+
# via qudida
|
207 |
+
scipy==1.11.1
|
208 |
+
# via
|
209 |
+
# albumentations
|
210 |
+
# cnstd
|
211 |
+
# scikit-image
|
212 |
+
# scikit-learn
|
213 |
+
seaborn==0.12.2
|
214 |
# via cnstd
|
215 |
+
sentry-sdk==1.30.0
|
216 |
+
# via wandb
|
217 |
+
setproctitle==1.3.2
|
218 |
+
# via wandb
|
219 |
+
shapely==2.0.1
|
220 |
# via cnstd
|
221 |
+
six==1.16.0
|
222 |
# via
|
223 |
+
# docker-pycreds
|
|
|
|
|
|
|
224 |
# python-dateutil
|
225 |
+
smmap==5.0.0
|
226 |
+
# via gitdb
|
227 |
+
sympy==1.12
|
228 |
+
# via
|
229 |
+
# onnxruntime
|
230 |
+
# torch
|
231 |
+
threadpoolctl==3.2.0
|
232 |
+
# via scikit-learn
|
233 |
+
tifffile==2023.8.30
|
234 |
+
# via scikit-image
|
235 |
torch==2.0.1
|
236 |
# via
|
237 |
# -r requirements.in
|
|
|
239 |
# pytorch-lightning
|
240 |
# torchmetrics
|
241 |
# torchvision
|
242 |
+
torchmetrics==0.11.4
|
243 |
+
# via
|
244 |
+
# -r requirements.in
|
245 |
+
# pytorch-lightning
|
246 |
torchvision==0.15.2
|
247 |
# via
|
248 |
# -r requirements.in
|
249 |
# cnstd
|
250 |
+
tqdm==4.65.0
|
251 |
# via
|
252 |
# -r requirements.in
|
253 |
# cnstd
|
254 |
+
# huggingface-hub
|
255 |
# pytorch-lightning
|
256 |
+
typing-extensions==4.7.0
|
257 |
# via
|
258 |
+
# huggingface-hub
|
259 |
+
# lightning-utilities
|
260 |
# onnx
|
261 |
# pytorch-lightning
|
262 |
+
# qudida
|
263 |
# torch
|
264 |
+
# wandb
|
265 |
+
tzdata==2023.3
|
266 |
+
# via pandas
|
267 |
+
unidecode==1.3.6
|
268 |
# via cnstd
|
269 |
+
urllib3==2.0.3
|
270 |
+
# via
|
271 |
+
# requests
|
272 |
+
# sentry-sdk
|
273 |
+
wandb==0.15.10
|
274 |
+
# via -r requirements.in
|
275 |
+
yarl==1.9.2
|
276 |
# via aiohttp
|
277 |
+
zipp==3.15.0
|
278 |
+
# via importlib-resources
|
279 |
+
|
280 |
+
cnocr==2.2.4
|
281 |
|
282 |
# The following packages are considered to be unsafe in a requirements file:
|
283 |
# setuptools
|
|
|
|
|
|
|
|
streamlit_app.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding: utf-8
|
2 |
+
# Copyright (C) 2021, [Breezedeus](https://github.com/breezedeus).
|
3 |
+
# Licensed to the Apache Software Foundation (ASF) under one
|
4 |
+
# or more contributor license agreements. See the NOTICE file
|
5 |
+
# distributed with this work for additional information
|
6 |
+
# regarding copyright ownership. The ASF licenses this file
|
7 |
+
# to you under the Apache License, Version 2.0 (the
|
8 |
+
# "License"); you may not use this file except in compliance
|
9 |
+
# with the License. You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing,
|
14 |
+
# software distributed under the License is distributed on an
|
15 |
+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
16 |
+
# KIND, either express or implied. See the License for the
|
17 |
+
# specific language governing permissions and limitations
|
18 |
+
# under the License.
|
19 |
+
|
20 |
+
import os
|
21 |
+
from collections import OrderedDict
|
22 |
+
|
23 |
+
import cv2
|
24 |
+
import numpy as np
|
25 |
+
from PIL import Image
|
26 |
+
import streamlit as st
|
27 |
+
from cnstd.utils import pil_to_numpy, imsave
|
28 |
+
|
29 |
+
from cnocr import CnOcr, DET_AVAILABLE_MODELS, REC_AVAILABLE_MODELS
|
30 |
+
from cnocr.utils import set_logger, draw_ocr_results, download
|
31 |
+
|
32 |
+
|
33 |
+
logger = set_logger()
|
34 |
+
st.set_page_config(layout="wide")
|
35 |
+
|
36 |
+
|
37 |
+
def plot_for_debugging(rotated_img, one_out, box_score_thresh, crop_ncols, prefix_fp):
|
38 |
+
import matplotlib.pyplot as plt
|
39 |
+
import math
|
40 |
+
|
41 |
+
rotated_img = rotated_img.copy()
|
42 |
+
crops = [info['cropped_img'] for info in one_out]
|
43 |
+
print('%d boxes are found' % len(crops))
|
44 |
+
ncols = crop_ncols
|
45 |
+
nrows = math.ceil(len(crops) / ncols)
|
46 |
+
fig, ax = plt.subplots(nrows=nrows, ncols=ncols)
|
47 |
+
for i, axi in enumerate(ax.flat):
|
48 |
+
if i >= len(crops):
|
49 |
+
break
|
50 |
+
axi.imshow(crops[i])
|
51 |
+
crop_fp = '%s-crops.png' % prefix_fp
|
52 |
+
plt.savefig(crop_fp)
|
53 |
+
print('cropped results are save to file %s' % crop_fp)
|
54 |
+
|
55 |
+
for info in one_out:
|
56 |
+
box, score = info.get('position'), info['score']
|
57 |
+
if score < box_score_thresh: # score < 0.5
|
58 |
+
continue
|
59 |
+
if box is not None:
|
60 |
+
box = box.astype(int).reshape(-1, 2)
|
61 |
+
cv2.polylines(rotated_img, [box], True, color=(255, 0, 0), thickness=2)
|
62 |
+
result_fp = '%s-result.png' % prefix_fp
|
63 |
+
imsave(rotated_img, result_fp, normalized=False)
|
64 |
+
print('boxes results are save to file %s' % result_fp)
|
65 |
+
|
66 |
+
|
67 |
+
@st.cache_resource
|
68 |
+
def get_ocr_model(det_model_name, rec_model_name, det_more_configs):
|
69 |
+
det_model_name, det_model_backend = det_model_name
|
70 |
+
rec_model_name, rec_model_backend = rec_model_name
|
71 |
+
return CnOcr(
|
72 |
+
det_model_name=det_model_name,
|
73 |
+
det_model_backend=det_model_backend,
|
74 |
+
rec_model_name=rec_model_name,
|
75 |
+
rec_model_backend=rec_model_backend,
|
76 |
+
det_more_configs=det_more_configs,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
def visualize_naive_result(img, det_model_name, std_out, box_score_thresh):
|
81 |
+
img = pil_to_numpy(img).transpose((1, 2, 0)).astype(np.uint8)
|
82 |
+
|
83 |
+
plot_for_debugging(img, std_out, box_score_thresh, 2, './streamlit-app')
|
84 |
+
st.subheader('Detection Result')
|
85 |
+
if det_model_name == 'default_det':
|
86 |
+
st.warning('⚠️ Warning: "default_det" 检测模型不返回文本框位置!')
|
87 |
+
cols = st.columns([1, 7, 1])
|
88 |
+
cols[1].image('./streamlit-app-result.png')
|
89 |
+
|
90 |
+
st.subheader('Recognition Result')
|
91 |
+
cols = st.columns([1, 7, 1])
|
92 |
+
cols[1].image('./streamlit-app-crops.png')
|
93 |
+
|
94 |
+
_visualize_ocr(std_out)
|
95 |
+
|
96 |
+
|
97 |
+
def _visualize_ocr(ocr_outs):
|
98 |
+
st.empty()
|
99 |
+
ocr_res = OrderedDict({'文本': []})
|
100 |
+
ocr_res['得分'] = []
|
101 |
+
for out in ocr_outs:
|
102 |
+
# cropped_img = out['cropped_img'] # 检测出的文本框
|
103 |
+
ocr_res['得分'].append(out['score'])
|
104 |
+
ocr_res['文本'].append(out['text'])
|
105 |
+
st.table(ocr_res)
|
106 |
+
|
107 |
+
|
108 |
+
def visualize_result(img, ocr_outs):
|
109 |
+
out_draw_fp = './streamlit-app-det-result.png'
|
110 |
+
font_path = 'docs/fonts/simfang.ttf'
|
111 |
+
if not os.path.exists(font_path):
|
112 |
+
url = 'https://huggingface.co/datasets/breezedeus/cnocr-wx-qr-code/resolve/main/fonts/simfang.ttf'
|
113 |
+
os.makedirs(os.path.dirname(font_path), exist_ok=True)
|
114 |
+
download(url, path=font_path, overwrite=True)
|
115 |
+
draw_ocr_results(img, ocr_outs, out_draw_fp, font_path)
|
116 |
+
st.image(out_draw_fp)
|
117 |
+
|
118 |
+
|
119 |
+
def main():
|
120 |
+
st.sidebar.header('模型设置')
|
121 |
+
det_models = list(DET_AVAILABLE_MODELS.all_models())
|
122 |
+
det_models.append(('naive_det', 'onnx'))
|
123 |
+
det_models.sort()
|
124 |
+
det_model_name = st.sidebar.selectbox(
|
125 |
+
'选择检测模型', det_models, index=det_models.index(('ch_PP-OCRv3_det', 'onnx'))
|
126 |
+
)
|
127 |
+
|
128 |
+
all_models = list(REC_AVAILABLE_MODELS.all_models())
|
129 |
+
all_models.sort()
|
130 |
+
idx = all_models.index(('densenet_lite_136-fc', 'onnx'))
|
131 |
+
rec_model_name = st.sidebar.selectbox('选择识别模型', all_models, index=idx)
|
132 |
+
|
133 |
+
st.sidebar.subheader('检测参数')
|
134 |
+
rotated_bbox = st.sidebar.checkbox('是否检测带角度文本框', value=True)
|
135 |
+
use_angle_clf = st.sidebar.checkbox('是否使用角度预测模型校正文本框', value=False)
|
136 |
+
new_size = st.sidebar.slider(
|
137 |
+
'resize 后图片(长边)大小', min_value=124, max_value=4096, value=768
|
138 |
+
)
|
139 |
+
box_score_thresh = st.sidebar.slider(
|
140 |
+
'得分阈值(低于阈值的结果会被过滤掉)', min_value=0.05, max_value=0.95, value=0.3
|
141 |
+
)
|
142 |
+
min_box_size = st.sidebar.slider(
|
143 |
+
'框大小阈值(更小的文本框会被过滤掉)', min_value=4, max_value=50, value=10
|
144 |
+
)
|
145 |
+
# std = get_std_model(det_model_name, rotated_bbox, use_angle_clf)
|
146 |
+
|
147 |
+
# st.sidebar.markdown("""---""")
|
148 |
+
# st.sidebar.header('CnOcr 设置')
|
149 |
+
det_more_configs = dict(rotated_bbox=rotated_bbox, use_angle_clf=use_angle_clf)
|
150 |
+
ocr = get_ocr_model(det_model_name, rec_model_name, det_more_configs)
|
151 |
+
|
152 |
+
st.markdown('# 开源Python OCR工具 ' '[CnOCR](https://github.com/breezedeus/cnocr)')
|
153 |
+
st.markdown('> 详细说明参见:[CnOCR 文档](https://cnocr.readthedocs.io/) ;'
|
154 |
+
'欢迎加入 [交流群](https://www.breezedeus.com/join-group) ;'
|
155 |
+
'作者:[breezedeus](https://www.breezedeus.com), [Github](https://github.com/breezedeus) 。')
|
156 |
+
st.markdown('')
|
157 |
+
st.subheader('选择待检测图片')
|
158 |
+
content_file = st.file_uploader('', type=["png", "jpg", "jpeg", "webp"])
|
159 |
+
if content_file is None:
|
160 |
+
st.stop()
|
161 |
+
|
162 |
+
try:
|
163 |
+
img = Image.open(content_file).convert('RGB')
|
164 |
+
|
165 |
+
ocr_out = ocr.ocr(
|
166 |
+
img,
|
167 |
+
return_cropped_image=True,
|
168 |
+
resized_shape=new_size,
|
169 |
+
preserve_aspect_ratio=True,
|
170 |
+
box_score_thresh=box_score_thresh,
|
171 |
+
min_box_size=min_box_size,
|
172 |
+
)
|
173 |
+
if det_model_name[0] == 'naive_det':
|
174 |
+
visualize_naive_result(img, det_model_name[0], ocr_out, box_score_thresh)
|
175 |
+
else:
|
176 |
+
visualize_result(img, ocr_out)
|
177 |
+
|
178 |
+
except Exception as e:
|
179 |
+
st.error(e)
|
180 |
+
|
181 |
+
|
182 |
+
if __name__ == '__main__':
|
183 |
+
main()
|