Spaces:
Build error
Build error
Commit
·
a08b800
0
Parent(s):
Duplicate from nitrosocke/Diffusion_Space
Browse filesCo-authored-by: Nitrosocke <[email protected]>
- .gitattributes +33 -0
- README.md +14 -0
- app.py +279 -0
- nsfw.png +0 -0
- requirements.txt +10 -0
- utils.py +6 -0
.gitattributes
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
25 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Diffusion Space
|
3 |
+
emoji: 💽
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: pink
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.6
|
8 |
+
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: creativeml-openrail-m
|
11 |
+
duplicated_from: nitrosocke/Diffusion_Space
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import utils
|
5 |
+
import datetime
|
6 |
+
import time
|
7 |
+
import psutil
|
8 |
+
from imwatermark import WatermarkEncoder
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
from diffusers import EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
|
12 |
+
|
13 |
+
start_time = time.time()
|
14 |
+
is_colab = utils.is_google_colab()
|
15 |
+
|
16 |
+
#wm = "SDV2"
|
17 |
+
#wm_encoder = WatermarkEncoder()
|
18 |
+
#wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
|
19 |
+
#def put_watermark(img, wm_encoder=None):
|
20 |
+
# if wm_encoder is not None:
|
21 |
+
# img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
22 |
+
# img = wm_encoder.encode(img, 'dwtDct')
|
23 |
+
# img = Image.fromarray(img[:, :, ::-1])
|
24 |
+
# return img
|
25 |
+
|
26 |
+
class Model:
|
27 |
+
def __init__(self, name, path="", prefix=""):
|
28 |
+
self.name = name
|
29 |
+
self.path = path
|
30 |
+
self.prefix = prefix
|
31 |
+
self.pipe_t2i = None
|
32 |
+
self.pipe_i2i = None
|
33 |
+
|
34 |
+
models = [
|
35 |
+
Model("Redshift Diffusion 768", "nitrosocke/redshift-diffusion-768", "redshift style")
|
36 |
+
]
|
37 |
+
# Model("Ghibli Diffusion", "nitrosocke/Ghibli-Diffusion", "ghibli style"),
|
38 |
+
# Model("Redshift Diffusion", "nitrosocke/Redshift-Diffusion", "redshift style"),
|
39 |
+
# Model("Nitro Diffusion", "nitrosocke/Nitro-Diffusion", "archer arcane modern disney"),
|
40 |
+
|
41 |
+
scheduler = EulerDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2", subfolder="scheduler", prediction_type="v_prediction")
|
42 |
+
|
43 |
+
#scheduler = EulerDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2-base", subfolder="scheduler")
|
44 |
+
|
45 |
+
custom_model = None
|
46 |
+
if is_colab:
|
47 |
+
models.insert(0, Model("Custom model"))
|
48 |
+
custom_model = models[0]
|
49 |
+
|
50 |
+
last_mode = "txt2img"
|
51 |
+
current_model = models[1] if is_colab else models[0]
|
52 |
+
current_model_path = current_model.path
|
53 |
+
|
54 |
+
if is_colab:
|
55 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
|
56 |
+
|
57 |
+
else: # download all models
|
58 |
+
print(f"{datetime.datetime.now()} Downloading vae...")
|
59 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
|
60 |
+
#vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
|
61 |
+
for model in models:
|
62 |
+
try:
|
63 |
+
print(f"{datetime.datetime.now()} Downloading {model.name} model...")
|
64 |
+
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
|
65 |
+
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, torch_dtype=torch.float16, scheduler=scheduler)
|
66 |
+
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, torch_dtype=torch.float16, scheduler=scheduler)
|
67 |
+
except Exception as e:
|
68 |
+
print(f"{datetime.datetime.now()} Failed to load model " + model.name + ": " + str(e))
|
69 |
+
models.remove(model)
|
70 |
+
pipe = models[0].pipe_t2i
|
71 |
+
|
72 |
+
if torch.cuda.is_available():
|
73 |
+
pipe = pipe.to("cuda")
|
74 |
+
|
75 |
+
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
76 |
+
|
77 |
+
def error_str(error, title="Error"):
|
78 |
+
return f"""#### {title}
|
79 |
+
{error}""" if error else ""
|
80 |
+
|
81 |
+
def custom_model_changed(path):
|
82 |
+
models[0].path = path
|
83 |
+
global current_model
|
84 |
+
current_model = models[0]
|
85 |
+
|
86 |
+
def on_model_change(model_name):
|
87 |
+
|
88 |
+
prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
|
89 |
+
|
90 |
+
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
|
91 |
+
|
92 |
+
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
93 |
+
|
94 |
+
print(psutil.virtual_memory()) # print memory usage
|
95 |
+
|
96 |
+
global current_model
|
97 |
+
for model in models:
|
98 |
+
if model.name == model_name:
|
99 |
+
current_model = model
|
100 |
+
model_path = current_model.path
|
101 |
+
|
102 |
+
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
103 |
+
|
104 |
+
try:
|
105 |
+
if img is not None:
|
106 |
+
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
|
107 |
+
else:
|
108 |
+
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator), None
|
109 |
+
except Exception as e:
|
110 |
+
return None, error_str(e)
|
111 |
+
|
112 |
+
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator):
|
113 |
+
|
114 |
+
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
|
115 |
+
|
116 |
+
global last_mode
|
117 |
+
global pipe
|
118 |
+
global current_model_path
|
119 |
+
if model_path != current_model_path or last_mode != "txt2img":
|
120 |
+
current_model_path = model_path
|
121 |
+
|
122 |
+
if is_colab or current_model == custom_model:
|
123 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
|
124 |
+
else:
|
125 |
+
pipe = pipe.to("cpu")
|
126 |
+
pipe = current_model.pipe_t2i
|
127 |
+
|
128 |
+
if torch.cuda.is_available():
|
129 |
+
pipe = pipe.to("cuda")
|
130 |
+
last_mode = "txt2img"
|
131 |
+
|
132 |
+
prompt = f"{current_model.prefix} {prompt}"
|
133 |
+
results = pipe(
|
134 |
+
prompt,
|
135 |
+
negative_prompt = neg_prompt,
|
136 |
+
# num_images_per_prompt=n_images,
|
137 |
+
num_inference_steps = int(steps),
|
138 |
+
guidance_scale = guidance,
|
139 |
+
width = width,
|
140 |
+
height = height,
|
141 |
+
generator = generator)
|
142 |
+
|
143 |
+
return results.images[0]
|
144 |
+
|
145 |
+
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
|
146 |
+
|
147 |
+
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
|
148 |
+
|
149 |
+
global last_mode
|
150 |
+
global pipe
|
151 |
+
global current_model_path
|
152 |
+
if model_path != current_model_path or last_mode != "img2img":
|
153 |
+
current_model_path = model_path
|
154 |
+
|
155 |
+
if is_colab or current_model == custom_model:
|
156 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
|
157 |
+
else:
|
158 |
+
pipe = pipe.to("cpu")
|
159 |
+
pipe = current_model.pipe_i2i
|
160 |
+
|
161 |
+
if torch.cuda.is_available():
|
162 |
+
pipe = pipe.to("cuda")
|
163 |
+
last_mode = "img2img"
|
164 |
+
|
165 |
+
prompt = f"{current_model.prefix} {prompt}"
|
166 |
+
ratio = min(height / img.height, width / img.width)
|
167 |
+
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
168 |
+
results = pipe(
|
169 |
+
prompt,
|
170 |
+
negative_prompt = neg_prompt,
|
171 |
+
# num_images_per_prompt=n_images,
|
172 |
+
init_image = img,
|
173 |
+
num_inference_steps = int(steps),
|
174 |
+
strength = strength,
|
175 |
+
guidance_scale = guidance,
|
176 |
+
width = width,
|
177 |
+
height = height,
|
178 |
+
generator = generator)
|
179 |
+
|
180 |
+
return results.images[0]
|
181 |
+
|
182 |
+
def replace_nsfw_images(results):
|
183 |
+
|
184 |
+
if is_colab:
|
185 |
+
return results.images[0]
|
186 |
+
|
187 |
+
for i in range(len(results.images)):
|
188 |
+
if results.nsfw_content_detected[i]:
|
189 |
+
results.images[i] = Image.open("nsfw.png")
|
190 |
+
return results.images[0]
|
191 |
+
|
192 |
+
css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
193 |
+
"""
|
194 |
+
with gr.Blocks(css=css) as demo:
|
195 |
+
gr.HTML(
|
196 |
+
f"""
|
197 |
+
<div class="diffusion-spave-div">
|
198 |
+
<div>
|
199 |
+
<h1>Diffusion Space</h1>
|
200 |
+
</div>
|
201 |
+
<p>
|
202 |
+
Demo for Nitrosocke's fine-tuned models.
|
203 |
+
</p>
|
204 |
+
<p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/drive/1Yr2QvQcqLHlApoQHDPzZmKREizVm9iZw"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
|
205 |
+
<p>You can also duplicate this space and upgrade to gpu by going to settings: <a style="display:inline-block" href="https://huggingface.co/spaces/nitrosocke/Diffusion_Space?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
|
206 |
+
</p>
|
207 |
+
</div>
|
208 |
+
"""
|
209 |
+
)
|
210 |
+
with gr.Row():
|
211 |
+
|
212 |
+
with gr.Column(scale=55):
|
213 |
+
with gr.Group():
|
214 |
+
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
|
215 |
+
with gr.Box(visible=False) as custom_model_group:
|
216 |
+
custom_model_path = gr.Textbox(label="Custom model path", placeholder="nitrosocke/Future-Diffusion", interactive=True)
|
217 |
+
gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
|
218 |
+
|
219 |
+
with gr.Row():
|
220 |
+
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
|
221 |
+
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
222 |
+
|
223 |
+
|
224 |
+
image_out = gr.Image(height=512)
|
225 |
+
# gallery = gr.Gallery(
|
226 |
+
# label="Generated images", show_label=False, elem_id="gallery"
|
227 |
+
# ).style(grid=[1], height="auto")
|
228 |
+
error_output = gr.Markdown()
|
229 |
+
|
230 |
+
with gr.Column(scale=45):
|
231 |
+
with gr.Tab("Options"):
|
232 |
+
with gr.Group():
|
233 |
+
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
234 |
+
|
235 |
+
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
|
236 |
+
|
237 |
+
with gr.Row():
|
238 |
+
guidance = gr.Slider(label="Guidance scale", value=7, maximum=15, step=1)
|
239 |
+
steps = gr.Slider(label="Steps", value=20, minimum=2, maximum=30, step=1)
|
240 |
+
|
241 |
+
with gr.Row():
|
242 |
+
width = gr.Slider(label="Width", value=768, minimum=768, maximum=1024, step=64)
|
243 |
+
height = gr.Slider(label="Height", value=768, minimum=768, maximum=1024, step=64)
|
244 |
+
|
245 |
+
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
246 |
+
|
247 |
+
with gr.Tab("Image to image"):
|
248 |
+
with gr.Group():
|
249 |
+
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
250 |
+
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
251 |
+
|
252 |
+
if is_colab:
|
253 |
+
model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
|
254 |
+
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
|
255 |
+
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
256 |
+
|
257 |
+
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
|
258 |
+
outputs = [image_out, error_output]
|
259 |
+
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
260 |
+
generate.click(inference, inputs=inputs, outputs=outputs)
|
261 |
+
|
262 |
+
ex = gr.Examples([
|
263 |
+
[models[0].name, "redshift style portrait black female cyberpunk hacker tattoos colorful short hair wearing a crop top redshift style", "mutated body double head bad anatomy long face long neck long body text watermark signature", 7, 20],
|
264 |
+
[models[0].name, "redshift style beautiful fjord at sunrise", "fog blurry soft", 7, 20],
|
265 |
+
|
266 |
+
], inputs=[model_name, prompt, neg_prompt, guidance, steps, seed], outputs=outputs, fn=inference, cache_examples=False)
|
267 |
+
|
268 |
+
gr.HTML("""
|
269 |
+
<div style="border-top: 1px solid #303030;">
|
270 |
+
<br>
|
271 |
+
<p>Model by Nitrosocke.</p>
|
272 |
+
</div>
|
273 |
+
""")
|
274 |
+
|
275 |
+
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
276 |
+
|
277 |
+
if not is_colab:
|
278 |
+
demo.queue(concurrency_count=1)
|
279 |
+
demo.launch(debug=is_colab, share=is_colab)
|
nsfw.png
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
2 |
+
torch==1.13.0
|
3 |
+
torchvision
|
4 |
+
git+https://github.com/huggingface/diffusers.git
|
5 |
+
transformers
|
6 |
+
accelerate
|
7 |
+
ftfy
|
8 |
+
python-dotenv
|
9 |
+
invisible-watermark
|
10 |
+
https://github.com/apolinario/xformers/releases/download/0.0.3/xformers-0.0.14.dev0-cp38-cp38-linux_x86_64.whl
|
utils.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def is_google_colab():
|
2 |
+
try:
|
3 |
+
import google.colab
|
4 |
+
return True
|
5 |
+
except:
|
6 |
+
return False
|