bosayama commited on
Commit
c47d1d4
·
verified ·
1 Parent(s): 12491b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -41
app.py CHANGED
@@ -1,41 +1 @@
1
- import cv2
2
- import requests
3
- import numpy as np
4
- import gradio as gr
5
-
6
- # Model URL
7
- image_model_url = 'https://teachablemachine.withgoogle.com/models/ZPfAhDYCh/model.json'
8
-
9
- # Load the model
10
- net = cv2.dnn.readNetFromTensorflow(requests.get(image_model_url).content)
11
-
12
- # Function to classify the image
13
- def classify_image(frame):
14
- # Flip the frame horizontally for better classification
15
- frame = cv2.flip(frame, 1)
16
-
17
- # Prepare the frame for classification
18
- blob = cv2.dnn.blobFromImage(frame, size=(224, 224), swapRB=True, crop=False)
19
- net.setInput(blob)
20
-
21
- # Get the predictions
22
- predictions = net.forward()
23
-
24
- # Find the index of the class with the highest confidence
25
- class_index = np.argmax(predictions)
26
-
27
- # Print the predicted label
28
- if class_index == 0:
29
- label = 'Class 0'
30
- elif class_index == 1:
31
- label = 'Class 1'
32
- else:
33
- label = 'Unknown'
34
-
35
- return label
36
-
37
- # Create Gradio interface
38
- iface = gr.Interface(fn=classify_image, inputs="webcam", outputs="text")
39
-
40
- # Launch the interface
41
- iface.launch()
 
1
+ pip install opencv-python