from transformers import pipeline import gradio as gr # Pipeline pipe = pipeline("text-classification", model="AbrorBalxiyev/my_awesome_model", return_all_scores=True) # def get_html_for_results(results): # # Sort results by score in descending order # sorted_results = sorted(results, key=lambda x: x['score'], reverse=True) # html = """ # #
# """ # for item in sorted_results: # percentage = item['score'] * 100 # html += f""" #
# {item['label']} #
#
#
# {percentage:.0f}% #
# """ # html += "
" # return html # # Gradio interfeysi uchun funksiyani qayta yozish # def classify_text(text): # if not text.strip(): # return "Please enter some text to classify." # pred = pipe(text) # return get_html_for_results(pred[0]) # # Gradio interfeysi # iface = gr.Interface( # fn=classify_text, # inputs=[ # gr.Textbox( # placeholder="Enter text to classify...", # label=None, # lines=3 # ) # ], # outputs=gr.HTML(), # title="Text Category Classification", # css=""" # .gradio-container { # font-family: Arial, sans-serif; # } # .gradio-interface { # max-width: 800px !important; # } # #component-0 { # border-radius: 8px; # border: 1px solid #ddd; # } # .submit-button { # background-color: #ff6b33 !important; # } # .clear-button { # background-color: #f0f0f0 !important; # color: #333 !important; # } # """, # examples=[ # ["Messi jahon chempioni bo'ldi"], # ["Yangi iPhone 15 Pro Max sotuvga chiqdi"], # ["Kitob o'qish foydali"], # ["Toshkentda ob-havo issiq"] # ] # ) # iface.launch(share=True) demo=gr.Interface.from_pipeline(pipe) demo.launch(debug=True)