from transformers import pipeline
import gradio as gr
# Pipeline
pipe = pipeline("text-classification", model="AbrorBalxiyev/my_awesome_model", return_all_scores=True)
# def get_html_for_results(results):
# # Sort results by score in descending order
# sorted_results = sorted(results, key=lambda x: x['score'], reverse=True)
# html = """
#
#
# """
# for item in sorted_results:
# percentage = item['score'] * 100
# html += f"""
#
#
{item['label']}
#
#
{percentage:.0f}%
#
# """
# html += "
"
# return html
# # Gradio interfeysi uchun funksiyani qayta yozish
# def classify_text(text):
# if not text.strip():
# return "Please enter some text to classify."
# pred = pipe(text)
# return get_html_for_results(pred[0])
# # Gradio interfeysi
# iface = gr.Interface(
# fn=classify_text,
# inputs=[
# gr.Textbox(
# placeholder="Enter text to classify...",
# label=None,
# lines=3
# )
# ],
# outputs=gr.HTML(),
# title="Text Category Classification",
# css="""
# .gradio-container {
# font-family: Arial, sans-serif;
# }
# .gradio-interface {
# max-width: 800px !important;
# }
# #component-0 {
# border-radius: 8px;
# border: 1px solid #ddd;
# }
# .submit-button {
# background-color: #ff6b33 !important;
# }
# .clear-button {
# background-color: #f0f0f0 !important;
# color: #333 !important;
# }
# """,
# examples=[
# ["Messi jahon chempioni bo'ldi"],
# ["Yangi iPhone 15 Pro Max sotuvga chiqdi"],
# ["Kitob o'qish foydali"],
# ["Toshkentda ob-havo issiq"]
# ]
# )
# iface.launch(share=True)
demo=gr.Interface.from_pipeline(pipe)
demo.launch(debug=True)