Lizhen Shi commited on
Commit
a706043
·
1 Parent(s): 2c127d7
Files changed (2) hide show
  1. app.py +75 -0
  2. example.wav +0 -0
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import torch
4
+ from datasets import load_dataset
5
+
6
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
+
8
+
9
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
+
11
+ # load speech translation checkpoint
12
+ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
+
14
+
15
+
16
+ # load text-to-speech checkpoint and speaker embeddings
17
+ processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
18
+
19
+ model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
20
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
21
+
22
+ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
23
+ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
24
+
25
+
26
+ def translate(audio):
27
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language":"dutch"})
28
+ return outputs["text"]
29
+
30
+
31
+ def synthesise(text):
32
+ inputs = processor(text=text, return_tensors="pt")
33
+ speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
34
+ return speech.cpu()
35
+
36
+
37
+ def speech_to_speech_translation(audio):
38
+ translated_text = translate(audio)
39
+ synthesised_speech = synthesise(translated_text)
40
+ synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
41
+ return 16000, synthesised_speech
42
+
43
+
44
+ title = "Cascaded STST"
45
+ description = """
46
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Dutch. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
47
+ [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
48
+
49
+ ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
50
+ """
51
+
52
+ demo = gr.Blocks()
53
+
54
+ mic_translate = gr.Interface(
55
+ fn=speech_to_speech_translation,
56
+ inputs=gr.Audio(source="microphone", type="filepath"),
57
+ outputs=gr.Audio(label="Generated Speech", type="numpy"),
58
+ title=title,
59
+ description=description,
60
+ )
61
+
62
+ file_translate = gr.Interface(
63
+ fn=speech_to_speech_translation,
64
+ inputs=gr.Audio(source="upload", type="filepath"),
65
+ outputs=gr.Audio(label="Generated Speech", type="numpy"),
66
+ examples=[["./example.wav"]],
67
+ title=title,
68
+ description=description,
69
+ )
70
+
71
+ with demo:
72
+ gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
73
+
74
+
75
+ demo.launch()
example.wav ADDED
Binary file (263 kB). View file